4,686
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticle Brain Delivery: A Guide to Verification Methods

ORCID Icon
Pages 409-432 | Received 26 Apr 2019, Accepted 25 Nov 2019, Published online: 30 Jan 2020

References

  • Sanovich E , BartusRT, FridenPMet al. Pathway across blood–brain barrier opened by the bradykinin agonist, RMP-7. Brain Res.705(1–2), 125–135 (1995).
  • Burke MJC , NelsonL, SladeJYet al. Morphometry of the hippocampal microvasculature in post-stroke and age-related dementias. Neuropathol. Appl. Neurobiol.40(3), 284–295 (2014).
  • Zlokovic BV , ApuzzoML. Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery43(4), 877–878 (1998).
  • Boström M , HellstroemErkenstam N, KaluzaDet al. The hippocampal neurovascular niche during normal development and after irradiation to the juvenile mouse brain. Int. J. Radiat. Biol.90(9), 778–789 (2014).
  • Ohno K , PettigrewKD, RapoportSI. Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am. J. Physiol.235(3), H299–H307 (1978).
  • Calvo P , GouritinB, ChacunHet al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res.18(8), 1157–1166 (2001).
  • Weiss N , MillerF, CazaubonS, CouraudP-O. The blood–brain barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta, Biomembr.1788(4), 842–857 (2009).
  • Rosenberg GA . Neurological diseases in relation to the blood–brain barrier. J. Cereb. Blood Flow Metab.32(7), 1139–1151 (2012).
  • Bellavance M-A , BlanchetteM, FortinD. Recent advances in blood–brain barrier disruption as a CNS delivery strategy. AAPS J.10(1), 166–177 (2008).
  • Burgess A , HynynenK. Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv. Exp. Med. Biol.880, 293–308 (2016).
  • Frigell J , GarciaI, Gomez-VallejoV, LlopJ, PenadesS. 68Ga-labeled gold glyconanoparticles for exploring blood–brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J. Am. Chem. Soc.136(1), 449–457 (2014).
  • Sela H , EliaP, ZachRet al. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J. Nanobiotechnol.13, 71 (2015).
  • Gage GJ , KipkeDR, ShainW. Whole animal perfusion fixation for rodents. J. Vis. Exp.65(65), 3564 (2012).
  • Buzulukov YP , ArianovaEA, DeminVFet al. Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis. Biol. Bull.41(3), 255–263 (2014).
  • Schleh C , Semmler-BehnkeM, LipkaJet al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology6, 36–46 (2012).
  • Yokel RA , TsengMT, DanMet al. Biodistribution and biopersistence of ceria engineered nanomaterials: size dependence. Nanomedicine9(3), 398–407 (2013).
  • Schäffler M , SousaF, WenkAet al. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials35(10), 3455–3466 (2014).
  • Hirn S , Semmler-BehnkeM, SchlehCet al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm.77(3), 407–416 (2011).
  • Gessner A , OlbrichC, SchroderW, KayserO, MullerRH. The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int. J. Pharm.214(1–2), 87–91 (2001).
  • Baghirov H , KaramanD, ViitalaTet al. Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier. PLoS ONE11(8), e0160705 (2016).
  • Dan M , TsengMT, WuPet al. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial. Int. J. Nanomed.7, 4023–4036 (2012).
  • Sanavio B , LibrizziL, PennacchioPet al. Distribution of superparamagnetic Au/Fe nanoparticles in an isolated guinea pig brain with an intact blood brain barrier. Nanoscale10(47), 22420–22428 (2018).
  • Wilhelm C , GazeauF, RogerJ, PonsJN, BacriJC. Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir18(21), 8148–8155 (2002).
  • Fiandra L , ColomboM, MazzucchelliSet al. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine11(6), 1387–1397 (2015).
  • Dal Magro R , AlbertiniB, BerettaSet al. Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomedicine14(2), 429–438 (2018).
  • Healy AT , VogelbaumMA. Convection-enhanced drug delivery for gliomas. Surg. Neurol. Int.6(Suppl. 1), S59–S67 (2015).
  • Lonser RR , SarntinoranontM, MorrisonPF, OldfieldEH. Convection-enhanced delivery to the central nervous system. J. Neurosurg.122(3), 697–706 (2015).
  • Mehta AM , SonabendAM, BruceJN. Convection-enhanced delivery. Neurotherapeutics14(2), 358–371 (2017).
  • Singh R , WangM, SchweitzerMEet al. Volume of distribution and clearance of peptide-based nanofiber after convection-enhanced delivery. J. Neurosurg.129(1), 10–18 (2018).
  • Liu Q , ShenY, ChenJet al. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm. Res.29(2), 546–558 (2012).
  • De Lorenzo AJD . The olfactory neuron and the blood–brain barrier. In: Taste and Smell in Vertebrates. WolstenholmeG, KnightJ ( Eds). Churchhill, London, UK, 151–176 (1970).
  • Gopinath PG , GopinathG, KumarTCA. Target site of intranasally sprayed substances and their transport across the nasal mucosa: a new insight into the intransal route of drug-delivery. Curr. Ther. Res.23(5), 596–607 (1978).
  • Oberdörster G , SharpZ, AtudoreiVet al. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol.16(6–7), 437–445 (2004).
  • Elder A , GeleinR, SilvaVet al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect.114(8), 1172–1178 (2006).
  • Hopkins LE , PatchinES, ChiuP-Let al. Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology8(8), 885–893 (2014).
  • Migliore MM , VyasTK, CampbellRB, AmijiMM, WaszczakBL. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J. Pharm. Sci.99(4), 1745–1761 (2010).
  • Wang D , WuY, XiaJ. Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics3(1), 010901 (2016).
  • Baddeley D , BewersdorfJ. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu. Rev. Biochem.87, 965–989 (2018).
  • Feiner-Gracia N , BeckM, PujalsSet al. Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona. Small13(41), 1701631 (2017).
  • Clemments AM , BotellaP, LandryCC. Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy. J. Am. Chem. Soc.139(11), 3978–3981 (2017).
  • Van Der Zwaag D , VanparijsN, WijnandsSet al. Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl. Mater. Interfaces8(10), 6391–6399 (2016).
  • Fumagalli G , MazzaD, ChristodoulouMSet al. Cyclopamine-paclitaxel-containing nanoparticles: internalization in cells detected by confocal and super-resolution microscopy. ChemPlusChem80(9), 1380–1383 (2015).
  • Patskovsky S , BergeronE, RiouxD, MeunierM. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy. J. Biophotonics8(5), 401–407 (2015).
  • Roth GA , TahilianiS, Neu-BakerNM, BrennerSA. Hyperspectral microscopy as an analytical tool for nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.7(4), 565–579 (2015).
  • Pena MDPS , GottipatiA, TahilianiSet al. Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc. Res. Tech.79(5), 349–358 (2016).
  • Mulik RS , BingC, Ladouceur-WodzakMet al. Localized delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound. Biomaterials83, 257–268 (2016).
  • Åslund AKO , BergS, HakSet al. Nanoparticle delivery to the brain – by focused ultrasound and self-assembled nanoparticle-stabilized microbubbles. J. Control. Rel.220(Part A), 287–294 (2015).
  • Yang T , MartinP, FogartyBet al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharm. Res.32(6), 2003–2014 (2015).
  • Han L , KongDK, ZhengM-Qet al. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano10(4), 4209–4218 (2016).
  • Kundu P , DasM, TripathyK, SahooSK. Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of parkinson’s disease. ACS Chem. Neurosci.7(12), 1658–1670 (2016).
  • Ko YT . Nanoparticle-mediated delivery of oligonucleotides to the blood–brain barrier: in vitro and in situ brain perfusion studies on the uptake mechanisms. J. Drug Target.21(9), 866–873 (2013).
  • Hu X , YangF, LiaoY, LiL, ZhangL. Cholesterol-PEG comodified poly(N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations. Drug Deliv.24(1), 121–132 (2017).
  • Liang J , GaoC, ZhuYet al. Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl. Mater. Interfaces10(36), 30201–30213 (2018).
  • Tamba BI , StreinuV, FolteaGet al. Tailored surface silica nanoparticles for blood–brain barrier penetration: preparation and in vivo investigation. Arabian J. Chem.11(6), 981–990 (2018).
  • Yang J-T , KuoY-C, ChenIYet al. Protection against neurodegeneration in the hippocampus using sialic acid- and 5-HT-moduline-conjugated lipopolymer nanoparticles. ACS Biomater. Sci. Eng.5(3), 1311–1320 (2019).
  • Rasmussen K , GonzálezM, KearnsPet al. Review of achievements of the OECD Working Party on Manufactured Nanomaterials’ Testing and Assessment Programme. From exploratory testing to test guidelines. Regul. Toxicol. Pharmacol.74, 147–160 (2016).
  • Lin P-C , LinS, WangPC, SridharR. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv.32(4), 711–726 (2014).
  • Manaia EB , AbuçafyMP, Chiari-AndréoBGet al. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed.12, 4991–5011 (2017).
  • Agronskaia AV , ValentijnJA, Van DrielLFet al. Integrated fluorescence and transmission electron microscopy. J. Struct. Biol.164(2), 183–189 (2008).
  • Kempen PJ , KircherMF, DeLa Zerda Aet al. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors. Micron68, 70–76 (2015).
  • Han S , RaabeM, HodgsonLet al. High-contrast imaging of nanodiamonds in cells by energy filtered and correlative light-electron microscopy: toward a quantitative nanoparticle-cell analysis. Nano Lett.19(3), 2178–2185 (2019).
  • Weiss B , SchaeferUF, ZappJet al. Nanoparticles made of fluorescence-labelled poly(L-lactide-co-glycolide): preparation, stability, and biocompatibility. J. Nanosci. Nanotechnol.6(9–10), 3048–3056 (2006).
  • Zandanel C , VauthierC. Characterization of fluorescent poly(isobutylcyanoacrylate) nanoparticles obtained by copolymerization of a fluorescent probe during Redox Radical Emulsion Polymerization (RREP). Eur. J. Pharm. Biopharm.82(1), 66–75 (2012).
  • Li K , LiuB. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev.43(18), 6570–6597 (2014).
  • Reisch A , KlymchenkoAS. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small12(15), 1968–1992 (2016).
  • Takasato Y , RapoportSI, SmithQR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol.247(3 Pt 2), H484–H493 (1984).
  • Triguero D , BuciakJ, PardridgeWM. Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J. Neurochem.54(6), 1882–1888 (1990).
  • Yokel RA . Methods to quantify nanomaterial association with, and distribution across, the blood–brain barrier in vivo. In: Nanotoxicity: Methods and Protocols. ZhangQ ( Ed.). Springer, NY, USA, 281–299 (2018).
  • Wohlfart S , KhalanskyAS, GelperinaS, BegleyD, KreuterJ. Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier. J. Control. Rel.154, 103–107 (2011).
  • Kafa H , WangJT-W, RubioNet al. The interaction of carbon nanotubes with an in vitro blood–brain barrier model and mouse brain in vivo. Biomaterials53, 437–452 (2015).
  • Ramalingam P , KoYT. Enhanced oral delivery of curcumin from n-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm. Res.32(2), 389–402 (2015).
  • Pang Z , GaoH, ChenJet al. Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes. Int. J. Nanomed.7, 3421–3432 (2012).
  • Johnsen KB , BakM, MelanderFet al. Modulating the antibody density changes the uptake and transport at the blood–brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Rel.295, 237–249 (2019).
  • Bommana MM , KirthivasanB, SquillanteE. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Deliv.19(6), 298–306 (2012).
  • Zhang X , LiuL, ChaiG, ZhangX, LiF. Brain pharmacokinetics of neurotoxin-loaded PLA nanoparticles modified with chitosan after intranasal administration in awake rats. Drug Dev. Ind. Pharm.39(11), 1618–1624 (2013).
  • Liu Z , OkekeCI, ZhangLet al. Mixed polyethylene glycol-modified breviscapine-loaded solid lipid nanoparticles for improved brain bioavailability: preparation, characterization, and in vivo cerebral microdialysis evaluation in adult Sprague Dawley rats. AAPS PharmSciTech15(2), 483–496 (2014).
  • Zhu J , ZouJ, MuCet al. Intranasal administration of pullulan-based nanoparticles for enhanced delivery of adriamycin into the brain: in vitro and in vivo evaluation. Pharmazie74(1), 39–46 (2019).
  • Al Zaki A , HuiJZ, HigbeeE, TsourkasA. Biodistribution, clearance, and toxicology of polymeric micelles loaded with 0.9 or 5 nm gold nanoparticles. J. Biomed. Nanotechnol.11(10), 1836–1846 (2015).
  • Krauze MT , NobleCO, KawaguchiTet al. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro-Oncol.9(4), 393–403 (2007).
  • Corem-Salkmon E , RamZ, DanielsDet al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int. J. Nanomed.6, 1595–1602 (2011).
  • Noble CO , KrauzeMT, DrummondDCet al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res.66(5), 2801–2806 (2006).
  • Oppong-Damoah A , ZamanRU, D’SouzaMJ, MurnaneKS. Nanoparticle encapsulation increases the brain penetrance and duration of action of intranasal oxytocin. Horm. Behav.108, 20–29 (2019).
  • Mackay JA , DeenDF, SzokaFC. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res.1035(2), 139–153 (2005).
  • Saito R , KrauzeMT, NobleCOet al. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro-Oncol.8(3), 205–214 (2006).
  • French JT , GoinsB, SaenzMet al. Interventional therapy of head and neck cancer with lipid nanoparticle-carried rhenium 186 radionuclide. J. Vasc. Interv. Radiol.21(8), 1271–1279 (2010).
  • Weng KC , HashizumeR, NobleCOet al. Convection-enhanced delivery of targeted quantum dot-immunoliposome hybrid nanoparticles to intracranial brain tumor models. Nanomedicine (Lond.)8(12), 1913–1925 (2013).
  • Sirianni RW , ZhengM-Q, PatelTRet al. Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography. Bioconjug. Chem.25(12), 2157–2165 (2014).
  • Arshad A , YangB, BienemannASet al. Convection-enhanced delivery of carboplatin PLGA nanoparticles for the treatment of glioblastoma. PLoS ONE10(7), e0132266 (2015).
  • Chen EM , QuijanoAR, SeoY-Eet al. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials178, 193–203 (2018).
  • Stephen ZR , ReviaRA, WangKet al. Time-resolved MRI assessment of convection-enhanced delivery by targeted and non-targeted nanoparticles in a human glioblastoma mouse model. Cancer Res.79(18), 4776–4786 (2019).
  • Stucht D , DanishadKA, SchulzePet al. Highest resolution in vivo human brain MRI using prospective motion correction. PLoS ONE10(7), e0133921 (2015).
  • IVIS Imaging Systems (2019). www.Perkinelmer.Com/Lab-Solutions/Resources/Docs/Sht_011713c_01_Ivis_Comparison_Table.Pdf
  • Barré FPY , HeerenRMA, PotočnikNO. Mass Spectrometry imaging in nanomedicine: unraveling the potential of MSI for the detection of nanoparticles in neuroscience. Curr. Pharm. Des.23(13), 1974–1984 (2017).
  • Ries J , KaplanC, PlatonovaE, EghlidiH, EwersH. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods9(6), 582–584 (2012).
  • Dudok B , BarnaL, LedriMet al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci.18(1), 75–86 (2015).
  • Herrmannsdorfer F , FlottmanB, NanguneriSet al. 3D D STORM imaging of fixed brain tissue. Methods Mol. Biol.1538, 169–184 (2017).
  • Wen C-J , ZhangL-W, Al-SuwayehSA, YenT-C, FangJ-Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomed.7, 1599–1611 (2012).
  • Singh-Moon RP , RoblyerDM, BigioIJ, JoshiS. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging. J. Biomed. Opt.19(9), 96003 (2014).
  • Mitkovski M , Padovan-NetoFE, Raisman-VozariRet al. Investigations into potential extrasynaptic communication between the dopaminergic and nitrergic systems. Front. Physiol. Membr. Physiol. Biophys.3(Sept.), 372 (2012).
  • Malatesta M . Transmission electron microscopy for nanomedicine: novel applications for long-established techniques. Eur. J. Histochem.60(4), 280–284 (2016).
  • Tröster SD , MüllerU, KreuterJ. Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int. J. Pharm.61(1–2), 85–100 (1990).
  • Fundarò A , CavalliR, BargoniAet al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol. Res.42(4), 337–343 (2000).
  • Gao K , JiangX. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int. J. Pharm.310(1–2), 213–219 (2006).
  • Chen Y-S , HungY-C, LinL-Wet al. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnol.21, 485102/485101–485102/485109 (2010).
  • Guerrero S , ArayaE, FiedlerJLet al. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine (Lond.)5, 897–913 (2010).
  • Liu H-L , HuaM-Y, YangH-Wet al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl Acad. Sci. USA107(34), 15205-10– (2010).
  • Tsai Y-M , ChienC-F, LinL-C, TsaiT-H. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharm.416(1), 331–338 (2011).
  • Wen C-J , YenT-C, Al-SuwayehSA, ChangH-W, FangJ-Y. In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester:oil ratios. Nanomedicine (Lond.)6(9), 1545–1559 (2011).
  • Wen Z , YanZ, HeRet al. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv.18(8), 555–561 (2011b).
  • Dziendzikowska K , Gromadzka-OstrowskaJ, LankoffAet al. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol.32(11), 920–928 (2012).
  • Prades R , GuerreroS, ArayaEet al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials33(29), 7194–7205 (2012).
  • Martins SM , SarmentoB, NunesCet al. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur. J. Pharm. Biopharm.85(3PA), 488–502 (2013).
  • Mazza M , NotmanR, AnwarJet al. Nanofiber-based delivery of therapeutic peptides to the brain. ACS Nano7(2), 1016–1026 (2013).
  • Chaturvedi M , KaczmarekL, MolinoY, SreedharB, KhrestchatiskyM. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int. J. Nanomed.9, 575–588 (2014).
  • Chen Y-C , ChiangC-F, ChenL-Fet al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials35(13), 4066–4081 (2014).
  • Jose S , SowmyaS, CinuTAet al. Surface modified PLGA nanoparticles for brain targeting of bacoside-A. Eur. J. Pharm. Sci.63, 29–35 (2014).
  • Joachim E , KimI-D, JinYet al. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Del. Trans. Res.4(5–6), 395–399 (2014).
  • Shilo M , MotieiM, HanaP, PopovtzerR. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale6(4), 2146–2152 (2014).
  • Wang B , LvL, WangZet al. Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis. Biomaterials35(22), 5897–5907 (2014).
  • Wang JTW , FabbroC, VenturelliEet al. The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles in vivo. Biomaterials35(35), 9517–9528 (2014).
  • Yang L , KuangH, ZhangWet al. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale7(2), 625–636 (2015).
  • Yadav S , GattaccecaF, PanicucciR, AmijiMM. Comparative biodistribution and pharmacokinetic analysis of cyclosporine-A in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Mol. Pharm.12(5), 1523–1533 (2015).
  • Joo J , KwonEJ, KangJet al. Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz.1(5), 407–414 (2016).
  • Zhang C , LiuQ, ShaoX, QianY, ZhangQ. Phage-displayed peptide-conjugated biodegradable nanoparticles enhanced brain drug delivery. Mater. Lett.167, 213–217 (2016).
  • Ruan S , HuC, TangXet al. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano10(11), 10086–10098 (2016).
  • Shah B , KhuntD, MisraM, PadhH. Application of Box–Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. Int. J. Biol. Macromol.89, 206–218 (2016).
  • Belhadj Z , YingM, WeiXet al. Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget8(40), 66889–66900 (2017).
  • Betzer O , ShiloM, OpochinskyRet al. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine (Lond.)12(13), 1533–1546 (2017).
  • Bouchoucha M , BéliveauÉ, KleitzF, CalonF, FortinM-A. Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting. J. Mater. Chem. B5(37), 7721–7735 (2017).
  • Ghadiri M , Vasheghani-FarahaniE, AtyabiFet al. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A105(10), 2851–2864 (2017).
  • Velasco-Aguirre C , Morales-ZavalaF, Salas-HuenuleoEet al. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomedicine (Lond.)12(20), 2503–2517 (2017).
  • Ishak RaH , MostafaNM, KamelAO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv.24(1), 1874–1890 (2017).
  • Kumar P , SharmaG, KumarRet al. Stearic acid based, systematically designed oral lipid nanoparticles for enhanced brain delivery of dimethyl fumarate. Nanomedicine (Lond.)12(23), 2607–2621 (2017).
  • Ammar HO , GhorabMM, MahmoudAA, HigazyIM. Lamotrigine loaded poly-ε-(D,L-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur. J. Pharm. Sci.115, 77–87 (2018).
  • Chan TG , MorseSV, CoppingMJ, ChoiJJ, VilarR. Targeted delivery of DNA–Au nanoparticles across the blood–brain barrier using focused ultrasound. ChemMedChem13(13), 1311–1314 (2018).
  • Dutta L , MukherjeeB, ChakrabortyTet al. Lipid-based nanocarrier efficiently delivers highly water soluble drug across the blood–brain barrier into brain. Drug Deliv.25(1), 504–516 (2018).
  • Fernandes J , GhateMV, BasuMallik S, LewisSA. Amino acid conjugated chitosan nanoparticles for the brain targeting of a model dipeptidyl peptidase-4 inhibitor. Int. J. Pharm.547(1–2), 563–571 (2018).
  • Li HY , ZhangB, ChanPSet al. Convergent synthesis and characterization of fatty acid-conjugated poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanoparticles for improved drug delivery to the brain. Eur. Polym. J.98, 394–401 (2018).
  • Graverini G , PiazziniV, LanducciEet al. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf. B161, 302–313 (2018).
  • Najafabadi RE , KazemipourN, EsmaeiliA, BeheshtiS, NazifiS. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol. Toxicol.19(1), 59 (2018).
  • Pandey PK , SharmaAK, RaniSet al. MCM-41 nanoparticles for brain delivery: better choline-esterase and amyloid formation inhibition with improved kinetics. ACS Biomater. Sci. Eng.4(8), 2860–2869 (2018).
  • Chen Y , XuC, YuB, FanH, HuW. Efficient cholera toxin B subunit-based nanoparticles with MRI capability for drug delivery to the brain following intranasal administration. Macromol. Biosci.19(2), e1800340 (2019).
  • Ha S-W , ChoA-S, KimTYet al. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system. Int. J. Nanomed.14, 3743–3752 (2019).
  • Israel LL , BraubachO, GalstyanAet al. A combination of tri-Leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood–brain barrier. ACS Nano13(2), 1253–1271 (2019).
  • Zhang T , LipH, HeCet al. Multitargeted nanoparticles deliver synergistic drugs across the blood–brain barrier to brain metastases of triple negative breast cancer cells and tumor-associated macrophages. Adv. Healthcare Mat.8(18), e1900543 (2019).