490
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticles for the Regulation of Intestinal Inflammation: Opportunities and Challenges

, &
Pages 2631-2644 | Received 09 May 2019, Accepted 29 Jul 2019, Published online: 15 Oct 2019

References

  • Ng SC , ShiHY , HamidiNet al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet390(10114), 2769–2778 (2017).
  • Kaplan GG , NgSC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology152(2), 313.e2–321.e2 (2017).
  • Khor B , GardetA , XavierRJ. Genetics and pathogenesis of inflammatory bowel disease. Nature474(7351), 307–317 (2011).
  • Ghosh S , MitchellR. Impact of inflammatory bowel disease on quality of life: results of the European Federation of Crohn's and Ulcerative Colitis Associations (EFCCA) patient survey. J. Crohns Colitis1(1), 10–20 (2007).
  • Irvine EJ . Quality of life of patients with ulcerative colitis: past, present, and future. Inflamm. Bowel Dis.14(4), 554–565 (2008).
  • Xavier RJ , PodolskyDK. Unravelling the pathogenesis of inflammatory bowel disease. Nature448, 427 (2007).
  • Taylor KM , IrvingPM. Optimization of conventional therapy in patients with IBD. Nat. Rev. Gastroenterol. Hepatol.8(11), 646–656 (2011).
  • Buchman AL . Side effects of corticosteroid therapy. J. Clin. Gastroenterol.33(4), 289–294 (2001).
  • Berends SE , StrikAS , LöwenbergM , D’HaensGR , MathôtRAA. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet.58(1), 15–37 (2019).
  • Cunliffe RN , ScottBB. Monitoring for drug side-effects in inflammatory bowel disease. Aliment. Pharmacol. Ther.16(4), 647–662 (2002).
  • Aberra FN , LichtensteinGR. Review article: monitoring of immunomodulators in inflammatory bowel disease. Aliment. Pharmacol. Ther.21(4), 307–319 (2005).
  • Lautenschläger C , SchmidtC , FischerD , StallmachA. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv. Drug Deliv. Rev.71(0), 58–76 (2014).
  • Lamprecht A , SchaferU , LehrC-M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res.18(6), 788–793 (2001).
  • Lamprecht A . Selective nanoparticle adhesion can enhance colitis therapy. Nat. Rev. Gastroenterol. Hepatol.7, 311 (2010).
  • Collnot EM , AliH , LehrCM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Rel.161(2), 235–246 (2012).
  • Xiao B , LarouiH , ViennoisEet al. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology146(5), 1289.e19–1300.e19 (2014).
  • Ali H , WeigmannB , NeurathMF , CollnotEM , WindbergsM , LehrC-M. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J. Control. Rel.183, 167–177 (2014).
  • Wilson DS , DalmassoG , WangL , SitaramanSV , MerlinD , MurthyN. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater.9, 923 (2010).
  • Nunes R , SarmentoB , ReisS , FonteP. Oral nanotechnological approaches for colon-specific drug delivery. In: Nanoparticles in the Life Sciences and Biomedicine. NevesAR, ReisS ( Eds). Panstanford Publishing, Oxon, UK, 133–158 (2018).
  • Bansil R , TurnerBS. The biology of mucus: composition, synthesis and organization. Adv. Drug Deliv. Rev.124, 3–15 (2018).
  • Pullan RD , ThomasGA , RhodesMet al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut35(3), 353–359 (1994).
  • Rankin BJ , SrivastavaED , RecordCO , PearsonJP , AllenA. Patients with ulcerative colitis have reduced mucin polymer content in the adherent colonic mucus gel. Biochem. Soc. Trans.23(1), 104S (1995).
  • Strugala V , DettmarPW , PearsonJP. Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn's disease. Int. J. Clin. Pract.62(5), 762–769 (2008).
  • Larsson JMH , KarlssonH , CrespoJGet al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis.17(11), 2299–2307 (2011).
  • Mankertz J , SchulzkeJ-D. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol.23(4), 379–383 (2007).
  • Bruewer M , SamarinS , NusratA. Inflammatory bowel disease and the apical junctional complex. Ann. N. Y. Acad. Sci.1072(1), 242–252 (2006).
  • Tirosh B , KhatibN , BarenholzY , NissanA , RubinsteinA. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm.6(4), 1083–1091 (2009).
  • Frank DN , StAmand AL , FeldmanRA , BoedekerEC , HarpazN , PaceNR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104(34), 13780–13785 (2007).
  • Manichanh C , Rigottier-GoisL , BonnaudEet al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut55(2), 205–211 (2006).
  • Mcconnell EL , FaddaHM , BasitAW. Gut instincts: explorations in intestinal physiology and drug delivery. Int. J. Pharm.364(2), 213–226 (2008).
  • Fallingborg J , ChristensenLA , JacobsenBA , RasmussenSN. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci.38(11), 1989–1993 (1993).
  • Nugent SG , KumarD , RamptonDS , EvansDF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut48(4), 571 (2001).
  • Sasaki Y , HadaR , NakajimaH , FukudaS , MunakataA. Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: colonic luminal pH in normal subjects and patients with Crohn's disease. Am. J. Gastroenterol.92(1), 114–118 (1997).
  • Siccardi D , TurnerJR , MrsnyRJ. Regulation of intestinal epithelial function: a link between opportunities for macromolecular drug delivery and inflammatory bowel disease. Adv. Drug Deliv. Rev.57(2), 219–235 (2005).
  • Date AA , HanesJ , EnsignLM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J. Control. Rel.240, 504–526 (2016).
  • Lamprecht A , YamamotoH , TakeuchiH , KawashimaY. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J. Pharmacol. Exp. Ther.315(1), 196–202 (2005).
  • Xiao B , LarouiH , AyyaduraiSet al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials34(30), 7471–7482 (2013).
  • Huang Y , GuoJ , GuiS. Orally targeted galactosylated chitosan poly(lactic-co-glycolic acid) nanoparticles loaded with TNF-α siRNA provide a novel strategy for the experimental treatment of ulcerative colitis. Eur. J. Pharm. Sci.125, 232–243 (2018).
  • Laroui H , ViennoisE , XiaoBet al. Fab'-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. J. Control. Rel.186, 41–53 (2014).
  • Xiao B , XuZ , ViennoisEet al. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol. Ther.25(7), 1628–1640 (2017).
  • Moulari B , BéduneauA , PellequerY , LamprechtA. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J. Control. Release188, 9–17 (2014).
  • Das Neves J , BahiaMF , AmijiMM , SarmentoB. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin. Drug Deliv.8(8), 1085–1104 (2011).
  • Sosnik A , DasNeves J , SarmentoB. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog. Polym. Sci.39(12), 2030–2075 (2014).
  • Niebel W , WalkenbachK , BéduneauA , PellequerY , LamprechtA. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J. Control. Rel.160(3), 659–665 (2012).
  • Lautenschlager C , SchmidtC , LehrCM , FischerD , StallmachA. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J. Pharm. Biopharm.85(3 Pt A), 578–586 (2013).
  • Coco R , PlapiedL , PourcelleVet al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int. J. Pharm.440(1), 3–12 (2013).
  • Lai SK , O’HanlonDE , HarroldSet al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA104(5), 1482–1487 (2007).
  • Cu Y , SaltzmanWM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol. Pharm.6(1), 173–181 (2009).
  • Maisel K , EnsignL , ReddyM , ConeR , HanesJ. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J. Control. Rel.197, 48–57 (2015).
  • Nunes R , AraujoF , TavaresJ , SarmentoB , DasNeves J. Surface modification with polyethylene glycol enhances colorectal distribution and retention of nanoparticles. Eur J. Pharm. Biopharm.130, 200–206 (2018).
  • Sadio A , AmaralAL , NunesRet al. A mouse intra-intestinal infusion model and its application to the study of nanoparticle distribution. Front. Physiol.7, 579 (2016).
  • Kotla NG , RanaS , SivaramanGet al. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2018.06.021 (2018) ( Epub ahead of print).
  • Zeeshan M , AliH , KhanS , KhanSA , WeigmannB. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int. J. Pharm.558, 201–214 (2019).
  • Beloqui A , CocoR , MemvangaPB , UcakarB , DesRieux A , PreatV. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm.473(1–2), 203–212 (2014).
  • Makhlof A , TozukaY , TakeuchiH. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J. Pharm. Biopharm.72(1), 1–8 (2009).
  • Lih-Brody L , PowellSR , CollierKPet al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci.41(10), 2078–2086 (1996).
  • Sedghi S , FieldsJZ , KlamutMet al. Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut34(9), 1191–1197 (1993).
  • Bertoni S , LiuZ , CorreiaAet al. pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv. Funct. Mater.28(50), 1806175 (2018).
  • Wang Y , ParkerCE , BhanjiT , FeaganBG , MacDonaldJK. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev.4, Cd000543 (2016).
  • Ford AC , KhanKJ , AchkarJ-P , MoayyediP. Efficacy of oral vs. topical, or combined oral and topical 5-aminosalicylates, in ulcerative colitis: systematic review and meta-analysis. Am. J. Gastroenterol.107(2), 167–176 (2012).
  • Ordás I , EckmannL , TalaminiM , BaumgartDC , SandbornWJ. Ulcerative colitis. Lancet380(9853), 1606–1619 (2012).
  • Lamprecht A . Multiparticulate systems in the treatment of inflammatory bowel disease. Curr. Drug Targets Inflamm. Allergy2(2), 137–144 (2003).
  • Pertuit D , MoulariB , BetzTet al. 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J. Control. Release123(3), 211–218 (2007).
  • Iwao Y , TomiguchiI , DomuraAet al. Inflamed site-specific drug delivery system based on the interaction of human serum albumin nanoparticles with myeloperoxidase in a murine model of experimental colitis. Eur J. Pharm. Biopharm.125, 141–147 (2018).
  • Moulari B , PertuitD , PellequerY , LamprechtA. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials29(34), 4554–4560 (2008).
  • Tang H , XiangD , WangF , MaoJ , TanX , WangY. 5-ASA-loaded SiO2 nanoparticles-a novel drug delivery system targeting therapy on ulcerative colitis in mice. Mol. Med. Rep.15(3), 1117–1122 (2017).
  • Winterbourn CC , KettleAJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med.29(5), 403–409 (2000).
  • Alagozlu H , GorgulA , BilgihanA , TuncerC , UnalS. Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis. Clin. Res. Hepatol. Gastroenterol.37(1), 80–85 (2013).
  • Chopra A , PardiDS , LoftusEVJret al. Budesonide in the treatment of inflammatory bowel disease: the first year of experience in clinical practice. Inflamm. Bowel Dis.12(1), 29–32 (2006).
  • Fedorak RN , BistritzL. Targeted delivery, safety, and efficacy of oral enteric-coated formulations of budesonide. Adv. Drug Deliv. Rev.57(2), 303–316 (2005).
  • Sun Q , LuanL , ArifMet al. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydr. Polym.189, 352–359 (2018).
  • Naeem M , ChoiM , CaoJet al. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des. Devel. Ther.9, 3789–3799 (2015).
  • Naeem M , KimW , CaoJ , JungY , YooJW. Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids Surf. B Biointerfaces123, 271–278 (2014).
  • Li W , LiY , LiuZet al. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials185, 322–332 (2018).
  • Date AA , HalpertG , BabuTet al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials185, 97–105 (2018).
  • Nguyen CTH , WebbRI , LambertLKet al. Bifunctional succinylated ϵ-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl. Mater. Interfaces9(11), 9470–9483 (2017).
  • Higa LH , JerezHE , DeFarias MA , PortugalRV , RomeroEL , MorillaMJ. Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine12(10), 1165–1175 (2017).
  • Wang X , YanJ-J , WangLet al. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem. Mater.30(12), 4073–4080 (2018).
  • Isaacs KL , LewisJD , SandbornWJ , SandsBE , TarganSR. State of the art: IBD therapy and clinical trials in IBD. Inflamm. Bowel Dis.11(Suppl. 1), S3–S12 (2005).
  • Courthion H , MugnierT , RousseauxC , MöllerM , GurnyR , GabrielD. Self-assembling polymeric nanocarriers to target inflammatory lesions in ulcerative colitis. J. Control. Rel.275, 32–39 (2018).
  • Guada M , SebastianV , IrustaS , FeijooE , Dios-VieitezMdel C , Blanco-PrietoMJ. Lipid nanoparticles for cyclosporine A administration: development, characterization, and in vitro evaluation of their immunosuppression activity. Int. J. Nanomed.10, 6541–6553 (2015).
  • Guada M , BeloquiA , AlhouayekMet al. Cyclosporine A-loaded lipid nanoparticles in inflammatory bowel disease. Int. J. Pharm.503(1–2), 196–198 (2016).
  • Melero A , DraheimC , HansenSet al. Targeted delivery of cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. Eur J. Pharm. Biopharm.119, 361–371 (2017).
  • Naeem M , BaeJ , OshiMAet al. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit((R)) FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int. J. Nanomed.13, 1225–1240 (2018).
  • Bak A , AshfordM , BraydenDJ. Local delivery of macromolecules to treat diseases associated with the colon. Adv. Drug Deliv. Rev.136–137, 2–27 (2018).
  • Frede A , NeuhausB , KlopfleischRet al. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J. Control. Rel.222, 86–96 (2016).
  • Laroui H , GeemD , XiaoBet al. Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles. Mol. Ther.22(1), 69–80 (2014).
  • Sitaraman SV , TheissAL , MerlinDet al. Nanoparticle-based therapeutic delivery of prohibitin to the colonic epithelial cells ameliorates acute murine colitis. Inflamm. Bowel Dis.17(5), 1163–1176 (2010).
  • Zuo L , HuangZ , DongLet al. Targeting delivery of anti-TNFas oligonucleotide into activated colonic macrophages protects against experimental colitis. Gut59(4), 470–479 (2010).
  • Cheng W , TangC , YinC. Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles. J. Gene Med.17(10–12), 244–256 (2015).
  • Laroui H , DalmassoG , NguyenHT , YanY , SitaramanSV , MerlinD. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology138(3), 843–853, (2010).
  • Kriegel C , AttarwalaH , AmijiM. Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Adv. Drug Deliv. Rev.65(6), 891–901 (2013).
  • Kriegel C , AmijiM. Oral TNF-alpha gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J. Control. Rel.150(1), 77–86 (2011).
  • Kriegel C , AmijiMM. Dual TNF-α/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin. Transl. Gastroenterol.2(3), e2 (2011).
  • Bhavsar MD , AmijiMM. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther.15(17), 1200–1209 (2008).
  • Bhavsar MD , AmijiMM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J. Control. Rel.119(3), 339–348 (2007).
  • Bhavsar MD , AmijiMM. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech9(1), 288–294 (2008).
  • Tian Y , XuJ , LiYet al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology156(8) 2281– 2296 (2019).
  • Schmidt C , LautenschlaegerC , CollnotEMet al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J. Control. Rel.165(2), 139–145 (2013).
  • Melo M , NunesR , SarmentoB , DasNeves J. Rectal administration of nanosystems: from drug delivery to diagnostics. Mater. Today Chem.10, 128–141 (2018).
  • Tinkle S , McNeilSE , MühlebachSet al. Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci.1313(1), 35–56 (2014).
  • Hua S , DeMatos MBC , MetselaarJM , StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol.9, 790–790 (2018).
  • Yang C , YuD-G , PanDet al. Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater.35, 77–86 (2016).
  • Duan B , LiM , SunY , ZouS , XuX. Orally delivered antisense oligodeoxyribonucleotides of TNF-α via polysaccharide-based nanocomposites targeting intestinal inflammation. Adv. Healthc. Mater.8(5), 1801389 (2019).
  • Elinav E , PeerD. Harnessing nanomedicine for mucosal theranostics -- a silver bullet at last?ACS Nano7(4), 2883–2890 (2013).
  • Jin M , YuD-G , WangX , GeraldesCFGC , WilliamsGR , BlighSWA. Electrospun contrast-agent-loaded fibers for colon-targeted MRI. Adv. Healthc. Mater.5(8), 977–985 (2016).
  • Jin M , YuD-G , GeraldesCFGC , WilliamsGR , BlighSWA. Theranostic fibers for simultaneous imaging and drug delivery. Mol. Pharm.13(7), 2457–2465 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.