216
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantum Dots Encapsulated with Curcumin Inhibit The Growth of Colon Cancer, Breast Cancer and Bacterial Cells

ORCID Icon, , , , , , , , , , & show all
Pages 969-980 | Received 24 Nov 2019, Accepted 11 Feb 2020, Published online: 30 Mar 2020

References

  • Newman DJ , CraggGM, SnaderKM. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod.66(7), 1022–1037 (2003).
  • Fukuda K , HibiyaY, MutohM, KoshijiM, AkaoS, FujiwaraH. Inhibition of activator protein 1 activity by berberine in human hepatoma cells. Planta Med.65(4), 381–383 (1990).
  • Kurup SK , Levy-ClarkeG, CalvoKR, JaffeES, NussenblattRB, ChanCC. Primary diffuse large B-cell lymphoma of the spleen with coincident serous retinal detachments responsive to corticosteroids. Clin. Exp. Ophthalmol.35(5), 468–472 (2007).
  • Varalakshmi CH , AliAM, PardhasaradhiBV, SrivastavaRM, SinghS, KharA. Immunomodulatory effects of curcumin: in-vivo. Int. Immunopharmacol.8(5), 688–700 (2008).
  • Harris Z , DonovanMG, BrancoGM, LimesandKH, BurdR. Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Front. Nutr.3, 48 (2016).
  • Maithilikarpagaselvi N , SridharMG, SwaminathanRP, SripradhaR. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats. J. Complement Integr. Med.13(2), 137–143 (2016).
  • Abdulkhaleq LA , AssiMA, NoorMHM, AbdullahR, SaadMZ, TaufiqYH. Therapeutic uses of epicatechin in diabetes and cancer. Vet. World10(8), 869–872 (2017).
  • Yallapu MM , JaggiM, ChauhanSC. Curcumin nanomedicine: a road to cancer therapeutics. Curr. Pharm.19(11), 1994–2010 (2013).
  • Shapiro H , BruckR. Therapeutic potential of curcumin in non-alcoholic steatohepatitis. Nutr. Res. Rev.18(2), 212–221 (2005).
  • Bengmark S . Curcumin, an atoxic antioxidant and natural NFkappa B cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J. Parenter. Enteral. Nutr.30(1), 45–51 (2006).
  • Jiao Y , WilkinsonJ, DiXet al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood113(2), 462–469 (2008).
  • Asgharpour A , CazanaveSC, PacanaTet al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol.65(3), 579–588 (2016).
  • Azandeh SS , AbbaspourM, KhodadadiA, KhorsandiL, OrazizadehM, Heidari-MoghadamA. Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iran J. Pharm. Res.16(3), 868–879 (2017).
  • Aggarwal BB , KumarA, BhartiAC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res.23, 363–398 (2003).
  • Swamy MV , CitineniB, PatlollaJMR, MohammedA, ZhangY, RaoCV. Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr. Cancer60(Suppl. 1), 81–89 (2008).
  • Milacic V , BanerjeeS, Landis-PiwowarKR, SarkarFH, MajumdarAPN, DouQP. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res.68(18), 7283–7292 (2008).
  • Half E , ArberN. Colon cancer: preventive agents and the present status of chemoprevention. Expert Opin. Pharmacother.10(2), 211–219 (2009).
  • Rafiee P , BinionDG, WellnerMet al. Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-{kappa}B. Am. J. Physiol. Gastrointest. Liver Physiol.298(6), G865–G877 (2010).
  • Wilken R , VeenaMS, WangMB, SrivatsanES. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer10, 12 (2011).
  • Qiao Q , JiangY, LiG. Inhibition of the PI3K/AKT-NF-κB pathway with curcumin enhanced radiation-induced apoptosis in human Burkitt’s lymphoma. J. Pharmacol. Sci.121(4), 247–256 (2013).
  • Jiang AJ , JiangG, LiLT, ZhengJN. Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Mol. Biol. Rep.42(1), 267–275 (2015).
  • Liu J , XuL, LiuCet al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr. Polym.90(1), 16–22 (2012).
  • Guterres SS , AlvesMP, PohlmannAR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights2, 147–157 (2007).
  • Hajj Ali H , MichauxF, NtsamaISB, DurandP, JasniewskiJ, LinderM. Shea butter solid nanoparticles for curcumin encapsulation: influence of nanoparticles size on drug loading. Eur. J. Lipid Sci. Technol.118(8), 1168–1178 (2016).
  • Farajzadeh R , Pilehvar-SoltanahmadiY, DadashpourMet al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif. Cells Nanomed. Biotechnol.46(5), 917–925 (2018).
  • Montazeri M , SadeghizadehM, Pilehvar-SoltanahmadiYet al. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int. J. Pharm.509(1–2), 244–254 (2016).
  • Divya R , RanjaniJ, BowenPKet al. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl.80, 59–68 (2017).
  • Lotfi-Attari J , Pilehvar-SoltanahmadiY, DadashpourMet al. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr. Cancer69(8), 1290–1299 (2017).
  • Divya R , RanjaniJ, RajendhranJ, MayandiJ, AnnarajJ. Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl.82, 182–189 (2018).
  • Esfandiarpour-Boroujeni S , Bagheri-KhoulenjaniS, MirzadehH. Modeling and optimization of degree of folate grafted on chitosan and carboxymethyl-chitosan. Prog. Biomater.5, 1–8 (2016).
  • Esfandiarpour-Boroujeni S , Bagheri-KhoulenjaniS, MirzadehH, AmanpourS. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym.168, 14–21 (2017).
  • Chaharband F , KamaliniaG, AtyabiF, MortazaviSA, MirsaieZH, DinarvandR. Formulation and in vitro evaluation of curcumin-lactoferrin conjugated nanostructures for cancerous cells. Artif. Cells Nanomed. Biotechnol.46(3), 626–636 (2018).
  • Sahu A , BoraU, KasojuN, GoswamiP. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater.4(6), 1752–1761 (2008).
  • Bagheri R , SanaatZ, ZarghamiN. Synergistic effect of free and nano-encapsulated chrysin-curcumin on inhibition of hTERT gene expression in SW480 colorectal cancer cell line. Drug Res. (Stuttg.)68(6), 335–343 (2018).
  • Papakostas D , RancanF, SterryW, Blume-PeytaviU, VogtA. Nanoparticles in dermatology. Arch. Dermatol. Res.303(8), 533–550 (2011).
  • Kreilgaard M . Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev.54(Suppl. 1), S77–S98 (2002).
  • Guo C , KhengarRH, SunM, WangZ, FanA, ZhaoY. Acid-responsive polymeric nanocarriers for topical adapalene delivery. Pharm. Res.31(11), 3051–3059 (2014).
  • Loira-Pastoriza C , Sapin-MinetA, DiabR, GrossiordJL, MaincentP. Low molecular weight heparin gels, based on nanoparticles, for topical delivery. Int. J. Pharm.426(1–2), 256–262 (2012).
  • Ueda H , WakabayashiS, KikuchiJ, IdaY, KadotaK, TozukaY. Anomalous role change of tertiary amino and ester groups as hydrogen acceptors in Eudragit E based solid dispersion depending on the concentration of naproxen. Mol. Pharm.12(4), 1050–1061 (2015).
  • Kola Srinivas NS , VermaR, PaiKulyadi G, KumarL. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int. J. Nanomedicine12, 15–28 (2016).
  • Lopedota A , TrapaniA, CutrignelliAet al. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur. J. Pharm. Biopharm.72(3), 509–520 (2009).
  • Khan FA , AkhtarS, AlmoftySA, AlmohazeyD, AlomariM. FMSP-nanoparticles induced cell death on human breast adenocarcinoma cell line (MCF-7 cells): morphometric analysis. Biomolecules8(2), 32 (2018).
  • Khan FA , AkhtarS, AlmohazeyDet al. Targeted delivery of poly(methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. Artif. Cells Nanomed. Biotechnol.47(1), 1533–1542 (2019).
  • Franken NA , RodermondHM, StapJ, HavemanJ, van BreeC. Clonogenic assay of cells in vitro. Nat. Protoc.1(5), 2315–2319 (2006).
  • Shaniba VS , AzizAA, JayasreePR, ManishKumar PR. Manilkara zapota (L.) P. royen leaf extract derived silver nanoparticles induce apoptosis in human colorectal carcinoma cells without affecting human lymphocytes or erythrocytes. Biol. Trace Elem. Res.192(2), 160–174 (2019).
  • Krishna Mohan PR , SreelakshmiG, MuraleedharanCV, JosephR. Water-soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib. Spectrosc.62, 77–84 (2012).
  • Yan J , WangY, ZhangX, LiuS, TianC, WangH. Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv.23(5), 1757–1762 (2015).
  • Khan KA , AkhtarS, AlmohazeyD, AlomariM, AlmoftySA. Extracts of clove (Syzygium aromaticum) potentiate FMSP-nanoparticles induced cell death in MCF-7. cells. Int. J. Biomater.2018, 8479439 (2018).
  • Khan FA , AkhtarS, AlmohazeyD, AlomariM, AlmoftySA, EliassariA. Fluorescent magnetic submicronic polymer (FMSP) nanoparticles induce cell death in human colorectal carcinoma cells. Artif. Cells Nanomed. Biotechnol.46(Suppl. 3), S247–S253 (2018).
  • Sahu BP , HazarikaH, BharadwajRet al. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin. Drug Deliv.13(8), 1065–1074 (2016).
  • Song Z , WuY, WangH, HanH. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Mater. Sci. Eng. C Mater. Biol. Appl.99, 255–263 (2019).
  • Kumar D , RajV, VermaA, KumarP, PandeyJ. Novel binary grafted chitosan nanocarrier for sustained release of curcumin. Int. J. Biol. Macromol.131, 184–191 (2019).
  • Abdellah AM , SliemMA, BakrM, AminRM. Green synthesis and biological activity of silver–curcumin nanoconjugates. Future Med. Chem.10(22), 2577–2588 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.