254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tumor Cell Death in Orthotopic Breast Cancer Model by NanoALA: A Novel Perspective on Photodynamic Therapy in Oncology

ORCID Icon, , , , ORCID Icon, , , , , & show all
Pages 1019-1036 | Received 20 Dec 2019, Accepted 19 Feb 2020, Published online: 08 Apr 2020

References

  • Ferlay J , ColombetM, SoerjomataramIet al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer144(8), 1941–1953 (2019).
  • Pareja F , MarchiòC, GeyerFC, WeigeltB, Reis-FilhoJS. Breast cancer heterogeneity: roles in tumorigenesis and therapeutic implications. Curr. Breast Cancer Rep.9(1), 34–44 (2017).
  • Allison R , MangT, HewsonG, SniderW, DoughertyD. Photodynamic therapy for chest wall progression from breast carcinoma is an underutilized treatment modality. Cancer91(1), 1–8 (2001).
  • Fan H , WangL, ZhangP, LiuS. Photodynamic therapy in spinal metastases: a qualitative analysis of published results. Int. Surg.100(4), 712–719 (2015).
  • Longo JPF , MuehlmannLA, Miranda-VilelaALet al. Prevention of distant lung metastasis after photodynamic therapy application in a breast cancer tumor model. J. Biomed. Nanotechnol.12(4), 689–699 (2016).
  • Castano AP , MrozP, HamblinMR. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer.6(7), 535–545 (2006).
  • Banerjee SM , MacRobertAJ, MosseCA, PerieraB, BownSG, KeshtgarMRS. Photodynamic therapy: inception to application in breast cancer. Breast31, 105–113 (2017).
  • Chilakamarthi U , GiribabuL. Photodynamic therapy: past, present and future. Chem. Rec.17(8), 775–802 (2017).
  • Momma T , HamblinMR, WuHC, HasanT. Photodynamic therapy of orthotopic prostate cancer with benzoporphyrin derivative: local control and distant metastasis. Cancer Res.58, 5425–5431 (1998).
  • Chitgupi U , QinY, LovellJF. Targeted nanomaterials for phototherapy. Nanotheranostics1(11), 38–58 (2017).
  • Dolmans DE , FukumuraD, JainRK.Photodynamic therapy for cancer. Nat. Rev. Cancer.3(5), 380–387 (2003).
  • Castano AP , DemidovaTN, HamblinMR. Mechanisms in photodynamic therapy: part two – cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn. Ther.2(Spec. Iss. 1), 1–23 (2005).
  • Castano AP , DemidovaTN, HamblinMR. Mechanisms in photodynamic therapy: part three – photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther.2(2), 91–106 (2005).
  • Sorrin AJ , RuhiMK, FerlicNAet al. Photodynamic therapy and the biophysics of the tumor microenvironment. Photochem. Photobiol. doi: 10.1111/php.13209 (2020) ( Epub ahead of print).
  • Agostinis P , BergK, CengelKAet al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin.61(4), 250–281 (2011).
  • O’Connor AE , GallagherWM, ByrneAT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol.85(5), 1053–1074 (2009).
  • Navone NM , PoloCF, FrisardiAL, AndradeNE, BattleAM. Heme biosynthesis in human breast cancer-mimetic “in vitro” studies and some heme enzymic activity levels. Int. J. Biochem.22(12), 1407–1411 (1990).
  • Castano AP , DemidovaTN, HamblinMR. Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther.1(4), 279–293 (2004).
  • Dorward AM , FancherKS, DuffyTM, BeamerWG, WaltH. Early neoplastic and metastatic mammary tumours of transgenic mice detected by 5-aminolevulinic acid-stimulated protoporphyrin IX accumulation. Br. J. Cancer93(10), 1137–1143 (2005).
  • Millon SR , OstranderJH, YazdanfarSet al. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes. J. Biomed. Opt.15(1), 18002–18008 (2010).
  • Gibbs SL , ChenB, O’HaraJA, HoopesPJ, HasanT, PogueBW. Protoporphyrin IX level correlates with number of mitochondria, but increase in production correlates with tumor cell size. Photochem. Photobiol.82(5), 1334 (2006).
  • Sailer R , StraussWSL, WagnerM, EmmertH, SchneckenburgerH. Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines. Photochem. Photobiol. Sci.6(2), 145–151 (2007).
  • Rodriguez L , DiVenosaG, BatlleA, MacRobertA, CasasA. Response to ALA-based PDT in an immortalised normal breast cell line and its counterpart transformed with the Ras oncogene. Photochem. Photobiol. Sci.6(12), 1306–1310 (2007).
  • Tsai T , JiHT, ChiangPC, ChouRH, ChangWSW, ChenCT. ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg. Med.41(4), 305–315 (2009).
  • Palasuberniam P , YangX, KrausD, JonesP, MyersKA, ChenB. ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci. Rep.5(1), 13298 (2015).
  • Peng Q , MoanJ, WarloeT, NeslandJM, RimingtonC. Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma. Int. J. Cancer52(3), 433–443 (1992).
  • González-Agüero G , Ramón-GallegosE. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer. AIP Conf. Proc.1494(1), 158–160 (2012).
  • Ladner DP , SteinerRA, AllemannJ, HallerU, WaltH. Photodynamic diagnosis of breast tumours after oral application of aminolevulinic acid. Br. J. Cancer84(1), 33–37 (2001).
  • Frei KA , BonelHM, FrickH, WaltH, SteinerRA. Photodynamic detection of diseased axillary sentinel lymph node after oral application of aminolevulinic acid in patients with breast cancer. Br. J. Cancer90(4), 805–809 (2004).
  • Feng Y , LiuL, HuS, LiuY, RenY, ZhangX. Forster resonance energy transfer properties of a new type of near-infrared excitation PDT photosensitizer: CuInS2/ZnS quantum dots-5-aminolevulinic acid conjugates. RSC Adv.6(60), 55568–55576 (2016).
  • Josefsen LB , BoyleRW. Photodynamic therapy: novel third-generation photosensitizers one step closer?Br. J. Pharmacol.154(1), 1–3 (2008).
  • Kataoka H , NishieH, HayashiNet al. New photodynamic therapy with next-generation photosensitizers. Ann. Transl. Med.5(8), 183–183 (2017).
  • Zhang J , JiangC, PauloJet al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B.8(2), 137–146 (2018).
  • Calavia PG , ChambrierI, CookMJ, HainesAH, FieldRA, RussellDA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J. Colloid Interface Sci.512, 249–259 (2018).
  • Pais-Silva C , de Melo-DiogoD, CorreiaIJ. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur. J. Pharm. Biopharm.113, 108–117 (2017).
  • Nam G , RangasamyS, JuH, SamsonAAS, SongJM. Cell death mechanistic study of photodynamic therapy against breast cancer cells utilizing liposomal delivery of 5,10,15,20-tetrakis(benzo[b]thiophene) porphyrin. J. Photochem. Photobiol. B Biol.166, 116–125 (2017).
  • Muehlmann LA , RodriguesMC, LongoJPFet al. Aluminium-phthalocyanine chloride nanoemulsions for anticancer photodynamic therapy: development and in vitro activity against monolayers and spheroids of human mammary adenocarcinoma MCF-7 cells. J. Nanobiotechnol.13(1), 36 (2015).
  • Muehlmann LA , MaBC, LongoJPF, AlmeidaSantos MF de M, AzevedoRB. Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy. Int. J. Nanomedicine9(1), 1199–1213 (2014).
  • Shemesh CS , HardyCW, YuDS, FernandezB, ZhangH. Indocyanine green loaded liposome nanocarriers for photodynamic therapy using human triple negative breast cancer cells. Photodiagnosis Photodyn. Ther.11(2), 193–203 (2014).
  • Yan F , WuH, LiuHet al. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J. Control. Rel.224, 217–228 (2016).
  • Konan YN , BertonM, GurnyR, AllémannE. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci.18(3–4), 241–249 (2003).
  • Lee Y-H , ChangD-S. Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci. Rep.7, 46688 (2017).
  • Wang B-Y , LiaoM-L, HongG-C, ChangW-W, ChuC-C. Near-infrared-triggered photodynamic therapy toward breast cancer cells using dendrimer-functionalized upconversion nanoparticles. Nanomaterials7(9), 269 (2017).
  • Wan G , ChenB, LiLet al. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy. Biomaterials155, 25–40 (2018).
  • Cheng S-H , LeeC-H, YangC-S, TsengF-G, MouC-Y, LoL-W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J. Mater. Chem.19(9), 1252 (2009).
  • Zhao N , WuB, HuX, XingD. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials141, 40–49 (2017).
  • Yurt F , OcakogluK, InceMet al. Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine integrated TiO2 nanoparticles in breast and cervical tumors. Chem. Biol. Drug Des.91(3), 789–796 (2018).
  • Hosseinzadeh R , KhorsandiK. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagnosis Photodyn. Ther.18, 284–294 (2017).
  • Penon O , MarínMJ, RussellDA, Pérez-GarcíaL. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. J. Colloid Interface Sci.496, 100–110 (2017).
  • dos Santos MSC , GouvêaAL, de MouraLDet al. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. J. Nanobiotechnology16(1), 9 (2018).
  • Fukuda H , ParedesS, BattleAM. Tumour-localizing properties of porphyrins in vivo studies using free and liposome encapsulated aminolevulinic acid. Comp. Biochem. Physiol. Part B Comp. Biochem.102(2), 433–436 (1992).
  • de Andrade LR , PrimoFL, da SilvaJR, TedescoAC, LacavaZGM. In vitro assessment of anti-tumorigenic mechanisms and efficacy of NanoALA, a nanoformulation of aminolevulic acid designed for photodynamic therapy of cancer. Photodiagnosis Photodyn. Ther.20(July), 62–70 (2017).
  • Ameluz 78 mg/g gel – Summary of Product Characteristics (SmPC) – (emc). www.medicines.org.uk/emc/product/3158/smpc
  • Morton CA , SzeimiesRM, Basset-SeguinNet al. European Dermatology Forum guidelines on topical photodynamic therapy 2019 part 1: treatment delivery and established indications – actinic keratoses, Bowen’s disease and basal cell carcinomas. J. Eur. Acad. Dermatol. Venereol.33(12), 2225–2238 (2019).
  • Sánchez-López E , GuerraM, Dias-FerreiraJet al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials9(6), pii: E821 (2019).
  • Makadia HK , SiegelSJ. Polylactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel)3(3), 1377–1397 (2011).
  • 4T1 ATCC® CRL-2539TM. https://www.atcc.org/Products/All/CRL-2539.aspx
  • Primo FL , daCosta Reis MB, PorcionattoMA, TedescoAC. Invitro evaluation of chloroaluminum phthalocyanine nanoemulsion and low-level laser therapy on human skin dermal equivalents and bone marrow mesenchymal stem cells. Curr. Med. Chem.18(22), 3376–3381 (2011).
  • Santos Dos , CâmaraAL, NagelG, TschicheHRet al. Acid-sensitive lipidated doxorubicin prodrug entrapped in nanoemulsion impairs lung tumor metastasis in a breast cancer model. Nanomedicine12(15), 1751–1765 (2017).
  • Bissell DM , AndersonKE, BonkovskyHL. Porphyria. N. Engl. J. Med.377(9), 862–872 (2017).
  • de Boniface J , FrisellJ, AnderssonYet al. Survival and axillary recurrence following sentinel node-positive breast cancer without completion axillary lymph node dissection: the randomized controlled SENOMAC trial. BMC Cancer17(1), 379 (2017).
  • Torchilin V . Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev.63(3), 131–135 (2011).
  • Goldman E , ZingerA, SilvaD, YaariZet al. Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology28(43), 43LT01 (2017).
  • Meng H , XueM, XiaTet al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano5(5), 4131–4144 (2011).
  • Kiseliovas V , MilosevicM, KojicMet al. Tumor progression effects on drug vector access to tumor-associated capillary bed. J. Control. Rel.261, 216–222 (2017).
  • Mikada M , SukhbaatarA, MiuraYet al. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci.108(5), 846–852 (2017).
  • Bermúdez Moretti M , CorreaGarcía S, PerottiC, BatlleA, CasasA. Delta-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by beta transporters. Br. J. Cancer87, 471–474 (2002).
  • Issa MCA , Manela-AzulayM. Terapia fotodinâmica: revisão da literatura e documentação iconográfica. An. Bras. Dermatol.85(4), 501–511 (2010).
  • Shi L , WangX, ZhaoFet al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int. J. Nanomedicine.8, 2669–2676 (2013).
  • Onuki J , TeixeiraPC, MedeirosMHG, di MascioP. Danos ao DNA promovidos por ácido 5-aminolevulínico: possível associação com o desenvolvimento de carcinoma hepatocelular em portadores de porfiria aguda intermitente. Quim. Nova.25(4), 594–608 (2002).
  • Pereira B , CuriR, KokubunE, BecharaEJ. 5-Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats. J. Appl. Physiol.72(1), 226–230 (1992).
  • Gollnick SO , EvansSS, BaumannHet al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br. J. Cancer88(11), 1772–1779 (2003).
  • Yeung H-Y , LoP-C, NgDKP, FongW-P. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol. Immunol.14(2), 223–234 (2017).
  • Korbelik M , HamblinMR. The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy. Photochem. Photobiol. Sci.14(8), 1403–1409 (2015).
  • Pansa MF , LambertiMJ, CognoIS, CorreaSG, RumieVittar NB, RivarolaVA. Contribution of resident and recruited macrophages to the photodynamic intervention of colorectal tumor microenvironment. Tumor Biol.37(1), 541–552 (2016).
  • Passos SK , de SouzaPE, SoaresPKet al. Quantitative approach to skin field cancerization using a nanoencapsulated photodynamic therapy agent: a pilot study. Clin. Cosmet. Investig. Dermatol.6, 51–59 (2013).
  • LEVULAN® KERASTICK® (aminolevulinic acid HCl) plus BLU-U®. www.levulanhcp.com/kerastick.html
  • Marinho VFZ , ZaguryMS, CaldeiraLG, GobbiH. Micrometastasis in axillary lymph node in breast cancer: immunohistochemistry versus hematoxylin and eosin detection. J. Bras. Patol. e Med. Lab.40(2), 127–132 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.