229
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lignin-Graft-Plga Drug-Delivery System Improves Efficacy of MEK1/2 Inhibitors in Triple-Negative Breast Cancer Cell Line

ORCID Icon, , , , , , , & show all
Pages 981-1000 | Received 08 Jan 2020, Accepted 19 Feb 2020, Published online: 02 Apr 2020

References

  • Breastcancer.org . Breast cancer information and support. www.breastcancer.org/
  • Berry DA , CirrincioneC, HendersonICet al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA295(14), 1658–1667 (2006).
  • Higgins MJ , BaselgaJ. Targeted therapies for breast cancer. J. Clin. Invest.121(10), 3797–3803 (2011).
  • O’Rorke MA , MurrayLJ, BrandJS, Bhoo-PathyN. The value of adjuvant radiotherapy on survival and recurrence in triple-negative breast cancer: a systematic review and meta-analysis of 5507 patients. Cancer Treat. Rev.47, 12–21 (2016).
  • Hershman DL , TillC, WrightJDet al. Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in Southwest Oncology Group clinical trials. J. Clin. Oncol.34(25), 3014–3022 (2016).
  • Chao C , PageJH, YangSJ, RodriguezR, HuynhJ, ChiaVM. History of chronic comorbidity and risk of chemotherapy-induced febrile neutropenia in cancer patients not receiving G-CSF prophylaxis. Ann. Oncol.25(9), 1821–1829 (2014).
  • Bradshaw PT , StevensJ, KhankariN, TeitelbaumSL, NeugutAI, GammonMD. Cardiovascular disease mortality among breast cancer survivors. Epidemiology27(1), 6–13 (2016).
  • de Boer-Dennert M , de WitR, SchmitzPIet al. Patient perceptions of the side-effects of chemotherapy: the influence of 5HT3 antagonists. Br. J. Cancer76(8), 1055–1061 (1997).
  • Tan KX , DanquahMK, SidhuA, OngkudonCM, LauSY. Towards targeted cancer therapy: aptamer or oncolytic virus?Eur. J. Pharm. Sci.96, 8–19 (2017).
  • Zajac M , MuszalskaI, JelinskaA. New molecular targets of anticancer therapy – current status and perspectives. Curr. Med. Chem.23(37), 4176–4220 (2016).
  • Oldham RK , DillmanRO. Monoclonal antibodies in cancer therapy: 25 years of progress. J. Clin. Oncol.26(11), 1774–1777 (2008).
  • Iannello A , AhmadA. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev.24(4), 487–499 (2005).
  • El-Khoueiry A , KurkjianC, SemradTet al. Abstract B75: a first in-human Phase I study to evaluate the MEK1/2 inhibitor GDC-0623 in patients with advanced solid tumors. Mol. Cancer Ther.12(Suppl. 11), B75–B75 (2013).
  • Heidorn SJ , MilagreC, WhittakerSet al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell140(2), 209–221 (2010).
  • Rajalingam K , SchreckR, RappURAlbertS. RAS oncogenes and their downstream targets. Biochim. Biophys. Acta1773(8), 1177–1195 (2007).
  • Bos JL . RAS oncogenes in human cancer: a review. Cancer Res.49(17), 4682–4689 (1989).
  • Singh H , LongoDL, ChabnerBA. Improving prospects for targeting RAS. J. Clin. Oncol.33(31), 3650–3659 (2015).
  • Sale MJ , CookSJ. Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer. Biochem. Soc. Trans.42(4), 776–783 (2014).
  • Adeyinka A , NuiY, CherletT, SnellL, WatsonPH, MurphyLC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin. Cancer Res.8(6), 1747–1753 (2002).
  • Thomas RS , SarwarN, PhoenixF, CoombesRC, AliS. Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J. Mol. Endocrinol.40(4), 173–184 (2008).
  • Kim R-K , SuhY, YooK-Cet al. Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp. Mol. Med.47, e137 (2015).
  • Hay M , ThomasDW, CraigheadJL, EconomidesC, RosenthalJ. Clinical development success rates for investigational drugs. Nat. Biotechnol.32(1), 40–51 (2014).
  • Blagosklonny MV . Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol. Sci.26(2), 77–81 (2005).
  • Liu D , AugusteDT. Cancer targeted therapeutics: from molecules to drug delivery vehicles. J. Control. Rel.219, 632–643 (2015).
  • Suh MS , ShenJ, KuhnLT, BurgessDJ. Layer-by-layer nanoparticle platform for cancer active targeting. Int. J. Pharm.517(1–2), 58–66 (2017).
  • Gao J , ZhongW, HeJet al. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Pharm.374(1–2), 145–152 (2009).
  • Cerqueira BBS , LashamA, ShellingAN, Al-KassasR. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl.76, 593–600 (2017).
  • Blanco E , ShenH, FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol.33(9), 941–951 (2015).
  • Danhier F , FeronO, PréatV. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Rel.148(2), 135–146 (2010).
  • Bae YH . Drug targeting and tumor heterogeneity. J. Control. Rel.133(1), 2–3 (2009).
  • Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med.1(1), 27–31 (1995).
  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46(12 Pt 1), 6387–6392 (1986).
  • Maeda H , BharateGY, DaruwallaJ. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm.71(3), 409–419 (2009).
  • Sims LB , CurtisLT, FrieboesHB, Steinbach-RankinsJM. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. J. Nanobiotechnol.14, 33 (2016).
  • Klapiszewski Ł , ZdartaJ, AnteckaKet al. Magnetite nanoparticles conjugated with lignin: a physicochemical and magnetic study. Appl. Surf. Sci.422, 94–103 (2017).
  • Liu K , ZhengD, LeiHet al. Development of novel lignin-based targeted polymeric nanoparticle platform for efficient delivery of anticancer drugs. ACS Biomater. Sci. Eng. 4(5), 1730–1737 (2018).
  • Wang X , ZhouX, HechtSM. Role of the 20-hydroxyl group in camptothecin binding by the topoisomerase I-DNA binary complex. Biochemistry38(14), 4374–4381 (1999).
  • Muse ES , PatelNR, AsteteCE, DamannKE, SabliovCM. Surface association and uptake of poly(lactic-co-glycolic) acid nanoparticles by Aspergillus flavus. Ther. Deliv.5(11), 1179–1190 (2014).
  • Tabaei SR , ChoiJ-H, HawZan G, ZhdanovVP, ChoN-J. Solvent-assisted lipid bilayer formation on silicon dioxide and gold. Langmuir30(34), 10363–10373 (2014).
  • Cho N-J , FrankCW, KasemoB, HöökF. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc.5(6), 1096–1106 (2010).
  • Patel AR , FrankCW. Quantitative analysis of tethered vesicle assemblies by quartz crystal microbalance with dissipation monitoring: binding dynamics and bound water content. Langmuir22(18), 7587–7599 (2006).
  • Evans K . Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids – a QCM-D and AFM study. Int, J. Mol. Sci.9(4), 498–511 (2008).
  • Andersson M , SellbornA, FantC, GretzerC, ElwingH. Acoustics of blood plasma on solid surfaces. J. Biomater. Sci. Polym. Ed.13(8), 907–917 (2002).
  • Santos-Martinez MJ , Inkielewicz-StepniakI, MedinaCet al. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation. Int. J. Nanomedicine7, 243–255 (2012).
  • Lind TK , CárdenasM. Understanding the formation of supported lipid bilayers via vesicle fusion – a case that exemplifies the need for the complementary method approach (review). Biointerphases11(2), 020801 (2016).
  • Joshi T , VooZX, GrahamB, SpicciaL, MartinLL. Real-time examination of aminoglycoside activity towards bacterial mimetic membranes using Quartz Crystal Microbalance with dissipation monitoring (QCM-D). Biochim. Biophys. Acta1848(2), 385–391 (2015).
  • Lesniak A , SalvatiA, Santos-MartinezMJ, RadomskiMW, DawsonKA, ÅbergC. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc.135(4), 1438–1444 (2013).
  • Shpigel N , LeviMD, SigalovS, DaikhinL, AurbachD. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc. Chem. Res.51(1), 69–79 (2018).
  • Sadman K , WienerCG, WeissRA, WhiteCC, ShullKR, VogtBD. Quantitative rheometry of thin soft materials using the quartz crystal microbalance with dissipation. Anal. Chem.90(6), 4079–4088 (2018).
  • Chen KL , BothunGD. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol.48(2), 873–880 (2014).
  • Yousefi N , TufenkjiN. Probing the Interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring. Front. Chem.4, 46 (2016).
  • Chen Q , XuS, LiuQ, MasliyahJ, XuZ. QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci.233, 94–114 (2016).
  • Tong X , MoradipourM, NovakBet al. Experimental and molecular dynamics simulation study of the effects of lignin dimers on the gel-to-fluid phase transition in DPPC bilayers. J. Phys. Chem. B.123(39), 8247–8260 (2019).
  • Ábrahám Á , KatonaM, KaszaG, KissÉ. Amphiphilic polymer layer – model cell membrane interaction studied by QCM and AFM. Eur. Polym. J.93, 212–221 (2017).
  • Frost R , GrandfilsC, CerdaB, KasemoB, SvedhemS. Structural rearrangements of polymeric insulin-loaded nanoparticles interacting with surface-supported model lipid membranes. J. Biomater. Nanobiotechnol.2(2), 180–192 (2011).
  • Zhao F , HolmbergJP, AbbasZet al. TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches. RSC Adv.6(94), 91102–91110 (2016).
  • Bailey CM , KamalooE, WatermanKL, WangKF, NagarajanR, CamesanoTA. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: a QCM-D study. Biophys. Chem.203–204, 51–61 (2015).
  • Jing B , ZhuY. Disruption of supported lipid bilayers by semihydrophobic nanoparticles. J. Am. Chem. Soc.133(28), 10983–10989 (2011).
  • Reimhult K , YoshimatsuK, RisvedenK, ChenS, YeL, KrozerA. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens. Bioelectron.23(12), 1908–1914 (2008).
  • Tellechea E , JohannsmannD, SteinmetzNF, RichterRP, ReviakineI. Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir25(9), 5177–5184 (2009).
  • Hasan IY , MechlerA. Formation of planar unilamellar phospholipid membranes on oxidized gold substrate. Biointerphases11(3), 031017 (2016).
  • Zwang TJ , FletcherWR, LaneTJ, JohalMS. Quantification of the layer of hydration of a supported lipid bilayer. Langmuir26(7), 4598–4601 (2010).
  • Marquês JT , VianaAS, de AlmeidaRFM. A biomimetic platform to study the interactions of bioelectroactive molecules with lipid nanodomains. Langmuir30(42), 12627–12637 (2014).
  • Win KY , FengS-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials26(15), 2713–2722 (2005).
  • Qaddoumi MG , UedaH, YangJ, DavdaJ, LabhasetwarV, LeeVHL. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm. Res.21(4), 641–648 (2004).
  • Sahoo SK , PanyamJ, PrabhaS, LabhasetwarV. Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Rel.82(1), 105–114 (2002).
  • Uttamsingh S , BaoX, NguyenKTet al. Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene27(18), 2626–2634 (2008).
  • Gujral TS , ChanM, PeshkinL, SorgerPK, KirschnerMW, MacBeathG. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell159(4), 844–856 (2014).
  • Casalino L , DeCesare D, VerdeP. Accumulation of Fra-1 in RAS-transformed cells depends on both transcriptional autoregulation and MEK-dependent posttranslational stabilization. Mol. Cell. Biol.23(12), 4401–4415 (2003).
  • Astete CE , SabliovCM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed.17(3), 247–289 (2006).
  • Noguchi T , YamamuroT, OkaMet al. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility. J. Appl. Biomater.2(2), 101–107 (1991).
  • Xu A , YaoM, XuGet al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int. J. Nanomedicine7, 3547–3554 (2012).
  • Cartiera MS , JohnsonKM, RajendranV, CaplanMJ, SaltzmanWM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials30(14), 2790–2798 (2009).
  • Bao W , LiuR, WangYet al. PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway. Int. J. Nanomedicine10, 557–566 (2015).
  • Davda J , LabhasetwarV. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm.233(1–2), 51–59 (2002).
  • Kirtane AR , KalscheuerSM, PanyamJ. Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv. Drug Deliv. Rev.65(13–14), 1731–1747 (2013).
  • Hatzivassiliou G , HalingJR, ChenHet al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature501(7466), 232–236 (2013).
  • Zaanan A , OkamotoK, KawakamiH, KhazaieK, HuangS, SinicropeFA. The mutant KRAS gene up-regulates BCL-XL protein via STAT3 to confer apoptosis resistance that is reversed by BIM protein induction and BCL-XL antagonism. J. Biol. Chem.290(39), 23838–23849 (2015).
  • Shin S , BlenisJ. ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Cell Cycle9(13), 2483–2484 (2010).
  • Shin S , DimitriCA, YoonS-O, DowdleW, BlenisJ. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol. Cell.38(1), 114–127 (2010).
  • Khalil NM , do NascimentoTCF, CasaDMet al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf. B Biointerface.101, 353–360 (2013).
  • Xie X , TaoQ, ZouYet al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J. Agric. Food Chem.59(17), 9280–9289 (2011).
  • Alexis F , PridgenE, MolnarLK, FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5(4), 505–515 (2008).
  • Kumari A , YadavSK, YadavSC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces75(1), 1–18 (2010).
  • Masood F . Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl.60, 569–578 (2016).
  • Khalil NM , CarraroE, CóticaLF, MainardesRM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin. Drug Deliv.8(1), 95–112 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.