512
Views
1
CrossRef citations to date
0
Altmetric
Special Report

Targeting Cancer with Lactoferrin Nanoparticles: Recent Advances

ORCID Icon
Pages 2071-2083 | Received 29 Feb 2020, Accepted 18 Jun 2020, Published online: 11 Aug 2020

References

  • Homayun B , LinX, ChoiHJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics11(3), 129 (2019).
  • Patra JK , DasG, FracetoLFet al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol.16(1), 71 (2018).
  • Vogel HJ . Lactoferrin, a bird’s eye view. Biochem. Cell. Biol.90(3), 233–44 (2012).
  • Wisgrill L , WesselyI, SpittlerA, Förster-WaldlE, BergerA, SadeghiK. Human lactoferrin attenuates the proinflammatory response of neonatal monocyte-derived macrophages. Clin. Exp. Immunol.192(3), 315–324 (2018).
  • Baker HM , BakerEN. A structural perspective on lactoferrin function. Biochem. Cell Biol.90(3), 320–328 (2012).
  • Zhang W , GuoH, JingHet al. Lactoferrin stimulates osteoblast differentiation through PKA and p38 pathways independent of lactoferrin’s receptor LRP1. J. Bone. Miner. Res.29(5), 1232–1243 (2014).
  • Rosa L , CutoneA, LepantoMS, PaesanoR, ValentiP. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci.18(9), 1985 (2017).
  • Giansanti F , PanellaG, LeboffeL, AntoniniG. Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals (Basel)9(4), 61 (2016).
  • Lesná J , TicháA, HyšplerRet al. Omentin-1 plasma levels and cholesterol metabolism in obese patients with diabetes mellitus type 1: impact of weight reduction. Nutr. Diabetes5(11), e183 (2015).
  • Grey A , BanovicT, Qetal Zhu The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol. Endocrinol.18(9), 2268–2278 (2004).
  • Ando K , HasegawaK, ShindoKet al. Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J.277(9), 2051–2066 (2010).
  • Takayama O , AokiR, UchidaR, TajimaA, Aoki-YoshidaacA. Role of CXC chemokine receptor type 4 as a lactoferrin receptor. Biochem. Cell Biol.95(1), 57–63 (2017).
  • Watanabe T , Watanabe-KominatoK, TakahashiY, KojimaM, WatanabeR. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol.7(3), 765–781 (2017).
  • Biscetti F , NardellaE, BonadiaNet al. Association between plasma omentin-1 levels in type 2 diabetic patients and peripheral artery disease. Cardiovasc. Diabetol.18(1), 74 (2019).
  • Saddic LA , NicoloroSM, GuptaOTet al. Joint analysis of left ventricular expression and circulating plasma levels of Omentin after myocardial ischemia. Cardiovasc. Diabetol.16(1), 87 (2017).
  • Kim HJ , KangUB, LeeHet al. Profiling of differentially expressed proteins in stage IV colorectal cancers with good and poor outcomes. J. Proteome75, 2983–2997 (2012).
  • Meilinger M , HaumerM, SzakmaryKAet al. Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor and transport to endosomes. FEBS Lett.360(1), 70–74 (1995).
  • Takayama Y , TakezawaT. Lactoferrin promotes collagen gel contractile activity of fibroblasts mediated by lipoprotein receptors. Biochem. Cell Biol.84(3), 268–274 (2006).
  • Demeule M , CurrieJC, BertrandYet al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem.106(4), 1534–1544 (2008).
  • Padmasekar M , NandigamaR, WartenbergM, SchlüterKD, SauerH. The acute phase protein alpha2-macroglobulin induces rat ventricular cardiomyocyte hypertrophy via ERK1,2 and PI3-kinase/Akt pathways. Cardiovasc. Res.75(1), 118–128 (2007).
  • Imaizumi T , MurakamiK, OhtaKet al. MDA5 and ISG56 mediate CXCL10 expression induced by toll-like receptor 4 activation in U373MG human astrocytoma cells. Neurosci. Res.76(4), 195–206 (2013).
  • Hakim F , WangY, ZhangSXet al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res.74(5), 1329–1337 (2014).
  • Curran CS , DemickKP, MansfieldJM. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol.242(1), 23–30 (2006).
  • Wang H , TangY, FangYet al. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ. Nano Lett.19(5), 2935–2944 (2019).
  • van Lith SAM , vanden Brand D, WallbrecherRet al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur. J. Pharm. Biopharm.124, 63–72 (2018).
  • Ash C , DubecM, DonneK, BashfordT. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci.32(8), 1909–1918 (2017).
  • Shankaranarayanan JS , KanwarJR, Al-JuhaishiAJ, KanwarRK. Doxorubicin conjugated to immunomodulatory anticancer lactoferrin displays improved cytotoxicity overcoming prostate cancer chemo resistance and inhibits tumour development in TRAMP mice. Sci. Rep.6, 32062 (2016).
  • Pandey A , SinghK, PatelS, SinghR, PatelK, SawantK. Hyaluronic acid tethered pH-responsive alloy-drug nanoconjugates for multimodal therapy of glioblastoma: an intranasal route approach. Mater. Sci. Eng. C Mater. Biol. Appl.98, 419–436 (2019).
  • Shen Z , LiuT, LiYet al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano12(11), 11355–11365 (2018).
  • Fillebeen C , DescampsL, DehouckM-Pet al. Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem.274, 7011–7017 (1999).
  • Tomitaka A , AramiH, GandhiS, KrishnanKM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale7(40), 16890–16898 (2015).
  • Fang JH , ChiuTL, HuangWCet al. Dual-targeting lactoferrin-conjugated polymerized magnetic polydiacetylene-assembled nanocarriers with self-responsive fluorescence/magnetic resonance imaging for in vivo brain tumor therapy. Adv. Healthc. Mater.5(6), 688–695 (2016).
  • Su YL , FangJH, LiaoCYet al. Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumorpenetration and therapy. Theranostics5(11), 1233–1248 (2015).
  • Su Z , XingL, ChenYet al. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol. Pharm.11(6), 1823–1834 (2014).
  • Mo X , ZhengZ, HeYet al. Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. J. Control. Rel.287, 12–23 (2018).
  • Song MM , XuHL, LiangJX, XiangHH, LiuR, ShenYX. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl.77, 904–911 (2017).
  • Zhang J , XiaoX, ZhuJet al. Lactoferrin- and RGD-co-modified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int. J. Nanomedicine22(13), 3039–3051 (2018).
  • Tammam SN , AzzazyHME, LamprechtA. Nuclear and cytoplasmic delivery of lactoferrin in glioma using chitosan nanoparticles: cellular location dependent-action of lactoferrin. Eur. J. Pharm. Biopharm.129, 74–79 (2018).
  • Kuo YC , ChenYC. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles. Int. J. Pharm.479(1), 138–149 (2015).
  • Xie H , ZhuY, JiangWet al. Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo. Biomaterials32(2), 495–502 (2011).
  • Ha NH , NairVS, ReddyDNet al. Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes. Cancer Res.71, 7259–7269 (2011).
  • Kanwar JR , KamalapuramSK, KrishnakumarS, KanwarRK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER(-)/PR(-)/HER2(-). Nanomedicine (Lond.)11(3), 249–268 (2016).
  • AbdElhamid AS , ZayedDG, HelmyMWet al. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine (Lond.)13(20), 2637–2656 (2018).
  • El-Lakany SA , ElgindyNA, HelmyMW, Abu-SerieMM, ElzoghbyAO. Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer. Expert Opin. Drug Deliv.15(9), 835–850 (2018).
  • Ali OM , BekhitAA, KhattabSN. Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy. Colloids Surfaces B: Biointerfaces188, 110824 (2020).
  • Tung Y-T , TangT-Y, ChenH-Let al. Lactoferrin protects against chemical-induced rat liver fibrosis by inhibiting stellate cell activation. J. Dairy Sci.97, 3281–3291 (2014).
  • Abdelmoneem MA , MahmoudM, ZakyAet al. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine (Lond.)13(19), 2377–2395 (2018).
  • Abdelmoneem MA , ElnaggarMA, HammadyRSet al. Dual-targeted lactoferrin shell-oily core nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces11(30), 26731–26744 (2019).
  • Tung Y-T , ChenH-L, YenC-Cet al. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J. Dairy Sci.96, 2095–2106 (2013).
  • Abd Elwakil MM , MabroukMT, HelmyMWet al. Inhalable lactoferrin-chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine (Lond.)13(16), 2015–2035 (2018).
  • Kabary DM , HelmyMW, AbdelfattahEA, FangJY, ElkhodairyKA, ElzoghbyAO. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur. J. Pharm. Biopharm.130, 152–164 (2018).
  • Kabary DM , HelmyMW, ElkhodairyKA, FangJY, ElzoghbyAO. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf. B Biointerfaces169, 183–194 (2018).
  • Zhang Y , LimaCF, RodriguesLR Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutrition Rev.72(12), 763–773 (2014).
  • Roy K , KanwarRK, KanwarJR. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials71, 84–99 (2015).
  • Orel VE , TselepiM, MitreliasTet al. Nanomagnetic modulation of tumor redox State. Nanomedicine14(4), 1249–1256 (2018).
  • Altwaijry N , SomaniS, ParkinsonJAet al. Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12. Drug Deliv.25(1), 679–689 (2018).
  • Lim LY , KohPY, SomaniSet al. Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. Nanomedicine11(6), 1445–1454 (2015).
  • Kamalapuram SK , KanwarRK, KanwarJR. Nanotheranosticbased iron oxide (Fe3O4) saturated lactoferrin nanocapsules for colonic adenocarcinoma. J. Biomed. Nanotechnol.12(9), 1758–1773 (2016).
  • Kamalapuram SK , KanwarRK, RoyK, ChaudharyR, SehgalR Theranostic multi modular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int. J. Nanomedicine11, 1349–1366 (2016).
  • Kanwar JR , MahidharaG, RoyKet al. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond.)10(1), 35–55 (2015).
  • Etman SM , AbdallahOY, ElnaggarYSR. Novel fucoidan based bioactive targeted nanoparticles from Undaria pinnatifida for treatment of pancreatic cancer. Int. J. Biol. Macromol.145, 390–401 (2019).
  • Nair A , ChauhanP, SahaB, KubatzkyKF. Conceptual evolution of cell signaling. Int. J. Mol. Sci.20(13), 3292 (2019).
  • Wang G , UludagH. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin. Drug Deliv.5(5), 499–515 (2008).
  • Eugene Mahon E , SalvatiA, BombelliFB, LynchI, DawsonKA. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Control Rel.161, 164–174 (2012).
  • Hattori M , AmetaniA, KatakuraY, ShimizuM, KaminogawaS. Unfolding/refolding studies on bovine beta-lactoglobulin with monoclonal antibodies as probes. Does a renatured protein completely refold?J. Biol. Chem.268, 22414–22419 (1993).
  • Cole NB , MurphyDD, GriderT, RueterS, BrasaemleD, NussbaumRL. Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein α-synuclein. J. Biol. Chem.277, 6344–6352 (2012).
  • Waldera R , SchwartzDK. Dynamics of protein aggregation at the oil–water interface characterized by single molecule TIRF microscopy. Soft Matter7, 7616–7622 (2011).
  • Krishna AD , MandrajuRK, KishoreG, KondapiAK. An efficient targeted drug delivery through apotransferrin loaded nanoparticles. PLoS One4(10), e7240 (2009).
  • Fine DH . Lactoferrin: a roadmap to the borderland between caries and periodontal disease. J. Dent. Res.94(6), 768–776 (2015).
  • Golla K , CherukuvadaB, AhmedF, KondapiAK. Efficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats. PLoS One7(12), e51960 (2012).
  • Ahmed F , AliMJ, KondapiAK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int. J. Biol. Macromol.70, 572–582 (2014).
  • Kumar P , LakshmiYS, KondapiAK. Triple drug combination of zidovudine, efavirenz and lamivudine loaded lactoferrin nanoparticles: an effective Nano first-line regimen for HIV therapy. Pharm. Res.34(2), 257–268 (2017).
  • Golla K , ReddyPS, BhaskarC, KondapiAK. Biocompatibility, absorption and safety of protein nanoparticle-based delivery of doxorubicin through oral administration in rats. Drug Deliv.20(3–4), 156–167 (2013).
  • Golla K , BhaskarC, AhmedF, KondapiAK. A target-specific oral formulation of doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer. J. Cancer4(8), 644–652 (2013).
  • Kumari S , KondapiAK. Lactoferrin nanoparticle mediated delivery of 5-fluorouracil for enhanced therapeutic efficacy. Int. J. Biol. Macromol.95, 232–237 (2017).
  • Kumari S , AhsanS, KumarJM, KondapiAK, RaoNM. Overcoming blood brain barrier with a dual purpose temozolomide loaded lactoferrin nanoparticles for combating glioma. Sci. Rep.7, 6602 (2017).
  • Kumari S , KondapiAK. Receptor-mediated targeted delivery of DNA using lactoferrin nanoparticles. Int. J. Biol. Macromol.108, 401–407 (2018).
  • Ahmed F , KumariS, KondapiAK. Evaluation of antiproliferative activity, safety and biodistribution of oxaliplatin and 5-fluorouracil loaded lactoferrin nanoparticles for the management of colon adenocarcinoma: an in vitro and an in vivo study. Pharm. Res.35(9), 178 (2018).
  • Kumari S , BhattacharyaD, RangarajN, ChakarvartyS, KondapiAK, RaoNM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine (Lond.)13(20), 2579–2596 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.