133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetic Nanomedicine for CD133-Expressing Cancer Therapy Using Locoregional Hyperthermia Combined with Chemotherapy

ORCID Icon, , , , & ORCID Icon
Pages 2543-2561 | Received 26 May 2020, Accepted 01 Sep 2020, Published online: 26 Oct 2020

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018).
  • Huang HH. Zouchu aizheng migong, quanmín yi qilai! Global Views Monthly 322 (2014). www.gvm.com.tw/article/18909.
  • Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 383(9927), 1490–1502 (2014).
  • Kim JH. Chemotherapy for colorectal cancer in the elderly. World J. Gastroenterol. 21(17), 5158–66 (2015).
  • Cubero DI, Cruz FM, Santi P, Silva ID, Del Giglio A. Tegafur-uracil is a safe alternative for the treatment of colorectal cancer in patients with partial dihydropyrimidine dehydrogenase deficiency: a proof of principle. Ther. Adv. Med. Oncol. 4(4), 167–72 (2012).
  • Lou Y, Wang Q, Zheng J et al. possible pathways of capecitabine-induced hand-foot syndrome. Chem. Res. Toxicol. 29(10), 1591–1601 (2016).
  • Magrini R, Bhonde MR, Hanski ML et al. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int. J. Cancer. 101(1), 23–31 (2002).
  • Bruce WR, Van Der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199, 79–80 (1963).
  • Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6), 717–728 (2012).
  • Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond.) 7(4), 597–615 (2012).
  • Paholak HJ, Stevers NO, Chen H et al. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials 104, 145–57 (2016).
  • Cavaliere R, Ciocatto EC, Giovanella BC et al. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 20(9), 1351–81 (1967).
  • Moroz P, Jones SK, Gray BN. The effect of tumour size on ferromagnetic embolization hyperthermia in a rabbit liver tumour model. Int. J. Hyperthermia 18(2), 129–140 (2002).
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24(6), 467–474 (2008).
  • Tan G, Chia C, Kumar M et al. 201 consecutive cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) procedures in a single Asian tertiary centre. Int. J. Hyperthermia 33(3), 288–294 (2017).
  • Datta NR, Krishnan S, Speiser DE et al. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat. Rev. 50, 217–227 (2016).
  • Dennis CL, Jackson AJ, Borchers JA et al. The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. J. Phys. D: Appl. Phys. 41, 134020 (2008).
  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596–606 (1957).
  • Tong S, Quinto CA, Zhang L, Mohindra P, Bao G. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11(7), 6808–6816 (2017).
  • Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J. Cancer Res. 89(7), 775–782 (1998).
  • Tanaka K, Ito A, Kobayashi T et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer 116(4), 624–33 (2005).
  • Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab. Rev. 52(1), 205–224 (2020).
  • Granov AM, Tiutin LA, Tarazov PG, Granov DA. Modern technologies of diagnosis and combined surgical treatment in liver tumors. Vestn Ross. Akad. Med. Nauk 10, 51–4 (2003).
  • Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater. 26(22), 3818–3836 (2016).
  • Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8(9), 2209–2211 (1996).
  • Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122(35), 8581–8582 (2000).
  • Park J, An K, Hwang Y et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891–5 (2004).
  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62(3), 284–304 (2010).
  • Thorat ND, Bohara RA, Malgras V et al. multimodal superparamagnetic nanoparticles with unusually enhanced specific absorption rate for synergetic cancer therapeutics and magnetic resonance imaging. ACS Appl. Mater. Interfaces 8(23), 14656–64 (2016).
  • Liong M, Shao H, Haun JB, Lee H, Weissleder R. Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv. Mater. 22(45), 5168–5172 (2010).
  • Muthana M, Kennerley AJ, Hughes R et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 6, 8009 (2015).
  • Xu C, Wang B, Sun S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131(12), 4216–4217 (2009).
  • Huang J, Li Y, Orza A et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater. 26(22), 3818–3836 (2016).
  • Mashhadi Malekzadeh A, Ramazani A, Tabatabaei Rezaei SJ, Niknejad H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci. 490, 64–73 (2017).
  • Inozemtseva OA, German SV, Navolokin NA, Bucharskaya AB, Maslyakova GN, Gorin DA. Encapsulated magnetite nanoparticles: preparation and application as multifunctional tool for drug delivery systems. In: Nanotechnology and Biosensors. Nikolelis DP, Nikoleli GP ( Eds). Elsevier, Amsterdam, Netherlands, 175–192 (2018).
  • Hu SH, Gao X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 132(21), 7234–7237 (2010).
  • Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7(29), 12728–36 (2015).
  • Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 18(8), 1127–34 (2009).
  • Zhang C, Zhou C, Wu XJ et al. Human CD133-positive hematopoietic progenitor cells initiate growth and metastasis of colorectal cancer cells. Carcinogenesis 35(12), 2771–7 (2014).
  • Baba T, Convery PA, Matsumura N et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28(2), 209–218 (2009).
  • Yi JM, Tsai HC, Glöckner SC et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 68(19), 8094–8103 (2008).
  • Hibi K, Sakata M, Kitamura YH et al. Demethylation of the CD133 gene is frequently detected in early gastric carcinoma. Anticancer Res. 30(4), 1201–1203 (2010).
  • Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro) epithelial cell differentiation. FEBS Lett. 584(9), 1659–1664 (2010).
  • Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett. 289(2), 151–60 (2010).
  • Piao LS, Hur W, Kim TK et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 315(2), 129–137 (2012).
  • De Palma R, Peeters S, Van Bael MJ et al. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 19(7), 1821–1831 (2007).
  • Byeon HJ, Min SY, Kim I et al. Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis. Bioconjug. Chem. 25(12), 2212–2221 (2014).
  • Tu TY, Yang SJ, Tsai MH et al. Dual-triggered drug-release vehicles for synergistic cancer therapy. Colloids Surf. B Biointerfaces 173, 788–797 (2019).
  • Albarqi HA, Wong LH, Schumann C et al. Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano 13(6), 6383–6395 (2019).
  • Long X, Zhang Z, Han S et al. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity. ACS Appl. Mater. Interfaces 7(14), 7542–7551 (2015).
  • Cano M, Núñez-Lozano R, Dumont Y, Larpent C, de la Cueva-Méndez G. Synthesis and characterization of multifunctional superparamagnetic iron oxide nanoparticles (SPION)/C60 nanocomposites assembled by fullerene–amine click chemistry. RSC Adv. 6, 70374–70382 (2016).
  • Lopez JA, González F, Bonilla FA, Zambrano G, Gómez ME. Synthesis and characterization of Fe3O4 magnetic nanofluid. Rev. Latin Am. Metal. Mater. 30(1), 60–66 (2016).
  • Subodh Mogha NK, Chaudhary K, Kumar G, Masram DT. Fur-imine-functionalized graphene oxide-immobilized copper oxide nanoparticle catalyst for the synthesis of xanthene derivatives. ACS Omega 3(11), 16377–16385 (2018).
  • Sahoo Y, Pizem H, Fried T et al. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25), 7907–7911 (2001).
  • Vlasova KY, Piroyan A, Le-Deygen IM et al. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J. Colloid Interface Sci. 552, 689–700 (2019).
  • Hu S, Lee E, Wang C et al. Amphiphilic drugs as surfactants to fabricate excipient-free stable nanodispersions of hydrophobic drugs for cancer chemotherapy. J. Control. Release 220(Pt A), 175–179 (2015).
  • Marinho LA, Rettori O, Vieira-Matos AN. Body weight loss as an indicator of breast cancer recurrence. Acta Oncol. 40(7), 832–837 (2001).
  • Rabin Y. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int. J. Hyperthermia 18(3), 194–202 (2002).
  • Giustini AJ, Ivkov R, Hoopes PJ. Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology 22(34), 345101 (2011).
  • Fang K, Song L, Gu Z, Yang F, Zhang Y, Gu N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf. B Biointerfaces 136, 712–720 (2015).
  • Xue W, Liu XL, Ma H et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J. Mater. Chem. B 6(15), 2289–2303 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.