7,116
Views
3
CrossRef citations to date
0
Altmetric
Review

Nanomedicine as A Promising Approach For Diagnosis, Treatment and Prophylaxis Against COVID-19

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2085-2102 | Received 11 Jun 2020, Accepted 08 Jul 2020, Published online: 29 Jul 2020

References

  • Coleman CM , LiuYV, MuHet al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine32(26), 3169–3174 (2014).
  • Coleman CM , FriemanMB. Coronaviruses: important emerging human pathogens. J. Virol.88(10), 5209–5212 (2014).
  • STAT Medicine . Synthetic biologists think they can develop a better coronavirus vaccine than nature could. http://www.scientificamerican.com/article/synthetic-biologists-think-they-can-develop-a-better-coronavirus-vaccine-than-nature-could/
  • World Health Organisation . WHO announces COVID-19 outbreak a pandemic. http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic
  • World Health Organisation . Coronavirus disease (COVID-19) situation report – 168. http://www.who.int/docs/default-source/coronaviruse/situation-reports/20200706-covid-19-sitrep-168.pdf?sfvrsn=7fed5c0b_2
  • Sekimukai H , Iwata-YoshikawaN, FukushiSet al. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol. Immunol.64(1), 33–51 (2019).
  • Coleman CM , VenkataramanT, LiuYVet al. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine35(12), 1586–1589 (2017).
  • Layqah LA , EissaS. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchimica Acta186(4), 224 (2019).
  • Wang M , CaoR, ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.30(3), 269–271 (2020).
  • Candanosa RM . Here’s how nanoparticles could help us get closer to a treatment for COVID-19. https://news.northeastern.edu/2020/03/04/heres-how-nanoparticles-could-help-us-get-closer-to-a-treatment-for-covid-19/
  • Ahn DG , ShinHJ, KimMHet al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol.30(3), 313–324 (2020).
  • Łoczechin A , SéronK, BarrasAet al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces11(46), 42964–42974 (2019).
  • Centers for Disease Control and Prevention Public Health Image Library . Image 23354. https://phil.cdc.gov/Details.aspx?pid=23354
  • Guo YR , CaoQD, HongZSet al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res.7(1), 11 (2020).
  • Wu F , ZhaoS, YuBet al. A new coronavirus associated with human respiratory disease in China. Nature579(7798), 265–269 (2020).
  • Khailany RA , SafdarM, OzaslanM. Genomic characterization of a novel SARS-CoV-2. Gene Rep.19, 100682 (2020).
  • Fehr AR , PerlmanS. Coronaviruses: an overview of their replication and pathogenesis. In: Coronaviruses: Methods in Molecular Biology.MaierHJ, BickertonE, BrittonP ( Eds). Humana Press, NY, USA, 1–23 (2015).
  • Bárcena M , OostergetelGT, BartelinkWet al. Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion. Proc. Natl Acad. Sci. USA106(2), 582–587 (2009).
  • Neuman BW , AdairBD, YoshiokaCet al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J. Virol.80(16), 7918–7928 (2006).
  • Sui J , LiW, MurakamiAet al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl Acad. Sci. USA101(8), 2536–2541 (2004).
  • Raj VS , MouH, SmitsSLet al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus – EMC. Nature495(7440), 251–254 (2013).
  • Li W , MooreMJ, VasilievaNet al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature426(6965), 450–454 (2003).
  • Zhou P , YangX-L, WangX-Get al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579(7798), 270–273 (2020).
  • Andersen KG , RambautA, LipkinWI, HolmesEC, GarryRF. The proximal origin of SARS-CoV-2. Nat. Med.26(4), 450–452 (2020).
  • Statnano.com . An overview of nanotechnology patents focusing on coronaviruses. https://statnano.com/news/67513/An-Overview-of-Nanotechnology-Patents-Focusing-on-Coronaviruses
  • Udugama B , KadhiresanP, KozlowskiHNet al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano14(4), 3822–3835 (2020).
  • Li W , ShiZ, YuMet al. Bats Are natural reservoirs of SARS-like coronaviruses. Science310(5748), 676–679 (2005).
  • Lau SKP , WooPCY, LiKSMet al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA102(39), 14040–14045 (2005).
  • Poon LLM , ChuDKW, ChanKHet al. Identification of a novel coronavirus in bats. J. Virol.79(4), 2001–2009 (2005).
  • Corman VM , ItheteNL, RichardsLRet al. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol.88(19), 11297–11303 (2014).
  • van Boheemen S , de GraafM, LauberCet al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio3(6), e00473–00412 (2012).
  • Zaki AM , van BoheemenS, BestebroerTM, OsterhausADME, FouchierRAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med.367(19), 1814–1820 (2012).
  • Lu R , ZhaoX, LiJet al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet395(10224), 565–574 (2020).
  • Guo Y-R , CaoQ-D, HongZ-Set al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res.7(1), 1–10 (2020).
  • Zhou P , YangXL, WangXGet al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579(7798), 270–273 (2020).
  • Amanat F , KrammerF. SARS-CoV-2 vaccines: status report. Immunity52(4), 583–589 (2020).
  • Ai T , YangZ, HouHet al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology doi: 10.1148/radiol.2020200642 (2020) ( Epub ahead of print).
  • Kalantar-Zadeh K , WardSA, Kalantar-ZadehK, El-OmarEM. Considering the effects of microbiome and diet on SARS-CoV-2 infection: nanotechnology roles. ACS Nano14(5), 5179–5182 (2020).
  • Zuo T , ZhangF, LuiGCYet al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology doi: 10.1053/j.gastro.2020.05.048 (2020) ( Epub ahead of print).
  • Petrosillo N , ViceconteG, ErgonulO, IppolitoG, PetersenE. COVID-19, SARS and MERS: are they closely related?Clin. Microbiol. Infect.26(6), 729–734 (2020).
  • Liu J , LiaoX, QianSet al. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis.26(6), 1320–1323 (2020).
  • Chan JFW , YuanS, KokKHet al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet395(10223), 514–523 (2020).
  • Zhang Y , ChenC, ZhuSet al. Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). CCDC Weekly2(8), 123–124 (2020).
  • Xiao F , TangM, ZhengX, LiuY, LiX, ShanH. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology158(6), 1831–1833 (2020).
  • Holmes KV , EnjuanesL. The SARS coronavirus: a postgenomic era. Science300(5624), 1377–1378 (2003).
  • Menachery VD , GralinskiLE, MitchellHDet al. Combination attenuation offers strategy for live attenuated coronavirus vaccines. J. Virol.92(17), e00710–00718 (2018).
  • Graham RL , DemingDJ, DemingME, YountBL, BaricRS. Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun. Biol1(1), 1–10 (2018).
  • Kruse RL . Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res.9, 72–72 (2020).
  • Spruth M , KistnerO, Savidis-DachoHet al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine24(5), 652–661 (2006).
  • Gao Q , BaoL, MaoHet al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science369(6499), 77–81 (2020).
  • Yang ZY , KongWP, HuangYet al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature428(6982), 561–564 (2004).
  • Sardesai NY , WeinerDB. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol.23(3), 421–429 (2011).
  • Kim TW , LeeJH, HungC-Fet al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J. Virol.78(9), 4638–4645 (2004).
  • Donnelly JJ , UlmerJB, ShiverJW, LiuMA. DNA vaccines. Annu. Rev. Immunol.15(1), 617–648 (1997).
  • Sin JI , WeinerDB. Improving DNA vaccines targeting viral infection. Intervirology43(4–6), 233–246 (2000).
  • Wang SF , TsengSP, YenCHet al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun.451(2), 208–214 (2014).
  • Wan Y , ShangJ, SunSet al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol.94(5), e02015–02019 (2020).
  • Tirado SMC , YoonK-J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol.16(1), 69–86 (2003).
  • Seo SH , WangL, SmithR, CollissonEW. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J. Virol.71(10), 7889–7894 (1997).
  • Inovio . Inovio accelerates timeline for COVID-19 DNA vaccine INO-4800. http://ir.inovio.com/news-releases/news-releases-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-Vaccine-INO-4800/default.aspx
  • Smith TRF , PatelA, RamosSet al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun.11(1), 2601 (2020).
  • Zhang J , ZengH, GuJ, LiH, ZhengL, ZouQ. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines8(2), E153 (2020).
  • Zhu FC , LiYH, GuanXHet al. Safety, tolerability, and immunogenicity of a recombinant adenovirus Type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet395(10240), 1845–1854 (2020).
  • PBR Staff Writer . Moderna doses first patient with mRNA-1273 in coronavirus vaccine trial. https://www.pharmaceutical-business-review.com/news/moderna-mrna-1273-coronavirus-trial/.
  • Pharmaceutical Business Review . Moderna doses first patient with mRNA-1273 in coronavirus vaccine trial. http://www.pharmaceutical-business-review.com/news/moderna-mrna-1273-coronavirus-trial/
  • Wang F , KreamRM, StefanoGB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med. Sci. Monit.26, e924700-1–e924700-8 (2020).
  • Genetic Engineering & Biotechnology News . Moderna. http://www.genengnews.com/covid-19-candidates/moderna/
  • Graham RL , DonaldsonEF, BaricRS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol.11, 836–848 (2013).
  • Okba NMA , RajVS, HaagmansBL. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr. Opin. Virol.23, 49–58 (2017).
  • Fukushi S , FukumaA, KurosuTet al. Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA. J. Virol. Methods251, 22–29 (2018).
  • Fukuma A , TaniH, TaniguchiS, ShimojimaM, SaijoM, FukushiS. Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein. Arch. Virol.160(9), 2293–2300 (2015).
  • Adney DR , WangL, van DoremalenNet al. Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas. Viruses11(3), 212 (2019).
  • Wang Y , TaiW, YangJet al. Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection. Hum. Vaccine Immunother.13(7), 1615–1624 (2017).
  • Zhu X , LiuQ, DuL, LuL, JiangS. Receptor-binding domain as a target for developing SARS vaccines. J. Thorac. Dis.5, S142–S148 (2013).
  • Lan J , YaoY, DengYet al. Recombinant receptor binding domain protein induces partial protective immunity in Rhesus macaques against Middle East respiratory syndrome coronavirus challenge. EBioMedicine2(10), 1438–1446 (2015).
  • Chen Y , LuS, JiaHet al. A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein. Emerg. Microb. Infect.6(1), 1–7 (2017).
  • Jiaming L , YanfengY, YaoDet al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine35(1), 10–18 (2017).
  • Du L , HeY, ZhouY, LiuS, ZhengBJ, JiangS. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol.7(3), 226–236 (2009).
  • Zakhartchouk AN , SharonC, SatkunarajahMet al. Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine25(1), 136–143 (2007).
  • Kim E , ErdosG, HuangSet al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine doi: 10.1016/j.ebiom.2020.102743 (2020) ( Epub ahead of print).
  • Dynavax . Dynavax and Clover Biopharmaceuticals announce research collaboration to evaluate coronavirus (COVID-19) vaccine candidate with CpG 1018 adjuvant. http://investors.dynavax.com/news-releases/news-release-details/dynavax-and-clover-biopharmaceuticals-announce-research
  • Takashima Y , OsakiM, IshimaruY, YamaguchiH, HaradaA. Artificial molecular clamp: a novel device for synthetic polymerases. Angew. Chem. Int. Ed.50(33), 7524–7528 (2011).
  • Ahmed SF , QuadeerAA, MckayMR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses12(3), 254 (2020).
  • Azmi F , FuaadAhmad, HadiAl Abdullah, SkwarczynskiM, TothI. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum. Vaccine Immunother.10(3), 778–796 (2014).
  • Buchholz UJ , BukreyevA, YangLet al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl Acad. Sci. USA101(26), 9804–9809 (2004).
  • Neuman BW , KissG, KundingAHet al. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol.174(1), 11–22 (2011).
  • Liu J , SunY, QiJet al. The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. J. Infect. Dis.202(8), 1171–1180 (2010).
  • Hofmann H , HattermannK, MarziAet al. S Protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J. Virol.78(12), 6134–6142 (2004).
  • Sui J , LiW, MurakamiAet al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl Acad. Sci. USA101(8), 2536–2541 (2004).
  • Jimenez-Guardeno JM , Regla-NavaJA, Nieto-TorresJLet al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog.11(10), e1005215 (2015).
  • Holshue ML , DeboltC, LindquistSet al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med.382(10), 929–936 (2020).
  • Reina J . Remdesivir, the antiviral hope against SARS-CoV-2. Rev. Esp. Quimioter.33(3), 176–179 (2020).
  • Sheahan TP , SimsAC, LeistSRet al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun.11, 222 (2020).
  • Cascella M , RajnikM, CuomoA, DulebohnSC, DiNapoli R. Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls.StatPearls Publishing, FL, USA (2020).
  • Beigel JH , TomashekKM, DoddLEet al. Remdesivir for the treatment of COVID-19 – preliminary report. N. Engl. J. Med. doi: 10.1056/NEJMoa2007764 (2020) ( Epub ahead of print).
  • Zumla A , ChanJFW, AzharEI, HuiDSC, YuenK-Y. Coronaviruses – drug discovery and therapeutic options. Nat. Rev. Drug Discov.15(5), 327–347 (2016).
  • Al-Tawfiq JA , MomattinH, DibJ, MemishZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis20, 42–46 (2014).
  • Wu CY , JanJT, MaSHet al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl Acad. Sci. USA101(27), 10012 (2004).
  • Chu CM , ChengVCC, HungIFNet al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax59(3), 252–256 (2004).
  • Cao B , WangY, WenDet al. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med.382(19), 1787–1799 (2020).
  • Hu TY , FriemanM, WolframJ. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol.15(4), 247–249 (2020).
  • Gao J , TianZ, YangX. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trend.14(1), 72–73 (2020).
  • Colson P , RolainJM, RaoultD. Chloroquine for the 2019 novel coronavirus. Int. J. Antimicrob. Agents55, 105923 (2020).
  • Savarino A , DiTrani L, DonatelliI, CaudaR, CassoneA. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis.6(2), 67–69 (2006).
  • Yan Y , ZouZ, SunYet al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res.23(2), 300–302 (2013).
  • Vincent MJ , BergeronE, BenjannetSet al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J.2(1), 69 (2005).
  • Rolain JM , ColsonP, RaoultD. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int. J. Antimicrob. Agents30(4), 297–308 (2007).
  • Karakus U , PohlMO, StertzS. Breaking the convention: sialoglycan variants, coreceptors, and alternative receptors for influenza A virus entry. J. Virol.94(4), e01357–01319 (2020).
  • Xu X , ChenP, WangJet al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci.63(3), 457–460 (2020).
  • Atluri S , ManchikantiL, HirschJA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use. Pain Phys.23, E71–E83 (2020).
  • Janowitz T , GablenzE, PattinsonDet al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut doi: 10.1136/gutjnl-2020-321852 (2020) ( Epub ahead of print).
  • Freedberg DE , ConigliaroJ, WangTCet al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology doi: 10.1053/j.gastro.2020.05.053 (2020) ( Epub ahead of print).
  • Abd Ellah NH , TawfeekHM, JohnJ, HettaHF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond.)14(11), 1471–1491 (2019).
  • Lu L , SunRW, ChenR, HuiCKet al. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther.13(2), 253–262 (2008).
  • Sun RWY , ChenR, ChungNPY, HoCM, LinCLS, CheCM. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun.40, 5059–5061 (2005).
  • Lara HH , Ixtepan-TurrentL, Garza-TreviñoEN, Rodriguez-PadillaC. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J. Nanobiotechnol.8, 15–15 (2010).
  • Sun L , SinghAK, VigK, PillaiSR, SinghSR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J. Biomed. Nanotechnol.4(2), 149–158 (2008).
  • Papp I , SiebenC, LudwigKet al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small6(24), 2900–2906 (2010).
  • Abd Ellah NH , AbouelmagdSA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Exp. Opin. Drug Deliv.14(2), 201–214 (2017).
  • Ahmad S , ZamryAA, TanHTT, WongKK, LimJ, MohamudR. Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. Mol. Immunol.91, 123–133 (2017).
  • Zhao L , SethA, WibowoNet al. Nanoparticle vaccines. Vaccine32(3), 327–337 (2014).
  • Pati R , ShevtsovM, SonawaneA. Nanoparticle vaccines against infectious diseases. Front. Immunol.9(2224), 2224 (2018).
  • Mubarak A , AlturaikiW, HemidaMG. Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J. Immunol. Res.2019, 1–11 (2019).
  • Charlton Hume HK , VidigalJ, CarrondoMJT, MiddelbergAPJ, RoldãoA, LuaLHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol. Bioeng.116(4), 919–935 (2019).
  • Rohovie MJ , NagasawaM, SwartzJR. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med.2(1), 43–57 (2017).
  • Kato T , TakamiY, KumarDV, ParkEY. Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J. Biotechnol.306, 177–184 (2019).
  • Wang C , ZhengX, GaiWet al. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res.140, 55–61 (2017).
  • Kim Y-S , SonA, KimJet al. Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front. Immunol.9(1093), 1–20 (2018).
  • Fang N , FrazerIH, FernandoGJP. Differences in the post-translational modifications of human papillomavirus type 6b major capsid protein expressed from a baculovirus system compared with a vaccinia virus system. Biotechnol. Appl. Biochem.32(1), 27–33 (2000).
  • Todd TJ , ZhenZ, XieJ. Ferritin nanocages: great potential as clinically translatable drug delivery vehicles?Nanomedicine (Lond.)8(10), 1555–1557 (2013).
  • Clark EDB . Refolding of recombinant proteins. Curr. Opin. Biotechnol.9(2), 157–163 (1998).
  • Pimentel TaPF , YanZ, JeffersSA, HolmesKV, HodgesRS, BurkhardP. Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem. Biol. Drug Des.73(1), 53–61 (2009).
  • Chen HW , HuangCY, LinSYet al. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials106, 111–118 (2016).
  • Dykman LA , KhlebtsovNG. Immunological properties of gold nanoparticles. Chem. Sci.8(3), 1719–1735 (2017).
  • Mukhopadhyay A , BasuS, SinghaS, PatraHK. Inner-view of nanomaterial incited protein conformational changes: insights into designable interaction. Research2018, 1–15 (2018).
  • Wang C , HorbyPW, HaydenFG, GaoGF. A novel coronavirus outbreak of global health concern. Lancet395(10223), 470–473 (2020).
  • Zhao Z , CuiH, SongW, RuX, ZhouW, YuX. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv doi: 10.1101/2020.02.22.961268 (2020) ( Preprint).
  • Gong P , HeX, WangK, TanWet al. Combination of functionalized nanoparticles and polymerase chain reaction-based method for SARS-CoV gene detection. J. Nanosci. Nanotechnol.8(1), 293–300 (2008).
  • Radwan SH , AzzazyHM. Gold nanoparticles for molecular diagnostics. Exp. Rev. Mol. Diagnost.9(5), 511–524 (2009).
  • Laromaine A , KohL, MurugesanM, UlijnRV, StevensMM. Protease-triggered dispersion of nanoparticle assemblies. J. Am. Chem. Soc.129(14), 4156–4157 (2007).
  • Kim H , ParkM, HwangJet al. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sensors4(5), 1306–1312 (2019).
  • Li H , RothbergL. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl Acad. Sci. USA101(39), 14036–14039 (2004).
  • Martínez-Paredes G , González-GarcíaMB, Costa-GarcíaA. Genosensor for SARS virus detection based on gold nanostructured screen-printed carbon electrodes. Electroanalysis21(3–5), 379–385 (2009).
  • Ahmed SR , NagyÉ, NeethirajanS. Self-assembled star-shaped chiroplasmonic gold nanoparticles for an ultrasensitive chiro-immunosensor for viruses. RSC Adv.7(65), 40849–40857 (2017).
  • AssayGenie . Rapid COVID-19 antibody detection tests: principles and methods. http://www.assaygenie.com/rapid-covid19-antibody-detection-tests-principles-and-methods
  • Xiang J , YanM, LiHet al. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). medRxiv doi: 10.1101/2020.02.27.20028787 (2020) ( Preprint).
  • Huang P , WangH, CaoZet al. A rapid and specific assay for the detection of MERS-CoV. Front. Microbiol.9(1101), 1–9 (2018).
  • Huang X , LiM, XuYet al. Novel gold nanorod-based HR1 peptide inhibitor for Middle East respiratory syndrome coronavirus. ACS Appl. Mater. Interfaces11(22), 19799–19807 (2019).
  • Han Y , KrálP. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano14(4), 5143–5147 (2020).
  • Duffy S . Why are RNA virus mutation rates so damn high?PLoS Biol.16(8), e3000003 (2018).
  • Foudeh AM , FatanatDidar T, VeresT, TabrizianM. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip12(18), 3249–3266 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.