560
Views
2
CrossRef citations to date
0
Altmetric
Review

In Vivo Drug Delivery Applications of Nanogels: A Review

, , ORCID Icon, & ORCID Icon
Pages 2707-2727 | Received 26 Jul 2020, Accepted 16 Sep 2020, Published online: 26 Oct 2020

References

  • Su H, Wang Y, Liu S et al. Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharm. Sin. B 9(1), 49–58 (2019).
  • Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Rel. 307, 221–246 (2019).
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 5(4), 707–715 (2009).
  • Hajebi S, Rabiee N, Bagherzadeh M et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019).
  • Kesharwani P, Gorain B, Low SY et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract. 136, 52–77 (2018).
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Rel. 153(3), 198–205 (2011).
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3), 233–278 (2014).
  • Tiwari G, Tiwari R, Bannerjee S et al. Drug delivery systems: an updated review. Int. J. Pharm. Investig. 2(1), 2 (2012).
  • Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138(3), 704–717 (2016).
  • Ramasamy T, Ruttala HB, Gupta B et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J. Control. Rel. 258, 226–253 (2017).
  • Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Rel. 166(2), 182–194 (2013).
  • Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Sci. Technol. 41, 260–268 (2017).
  • Niraj Srivastava VK, Singh N, Gupta T, Mishra U. Sustained and controlled drug delivery system - As a part of modified release dosage form. Int. J. Pharma Sci. 2(5), 586–601 (2013).
  • Mishra N, Pant P, Porwal A, Jaiswal J, Aquib M. Targeted drug delivery: a review. Am. J. Pharm. Tech. Res. 6, 2249–3387 (2016).
  • Gujral S, Khatri S. A review on basic concept of drug targeting and drug carrier system. Int. J. Adv. pharmacy, Biol. Chem. 2(1), 130–136 (2013).
  • Liyanage PY, Hettiarachchi SD, Zhou Y et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta - Rev. Cancer 1871(2), 419–433 (2019).
  • Vinogradov S, Batrakova E, Kabanov A. Poly(ethylene glycol)-polyethyleneimine NanoGel(TM) particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surfaces B Biointerfaces 16(1–4), 291–304 (1999).
  • Soni KS, Desale SS, Bronich TK. Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Rel. 240, 109–126 (2016).
  • Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr. Polym. 223, 115023 (2019).
  • Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration. Mater. Sci. Eng. C 107, 10195 (2019).
  • Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 64(9), 836–851 (2012).
  • Matusiak M, Kadlubowski S, Rosiak JM. Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiat. Phys. Chem. 169 (2020).
  • Xing L, Fan YT, Shen LJ et al. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Int. J. Biol. Macromol. 141, 85–97 (2019).
  • Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. Nanogels as drug carriers – introduction, chemical aspects, release mechanisms and potential applications. Int. J. Pharm. 581, 119268 (2020).
  • Qureshi MA, Khatoon F. Different types of smart nanogel for targeted delivery. J. Sci. Adv. Mater. Devices 4(2), 201–212 (2019).
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. 48(30), 5418–5429 (2009).
  • Pinelli F, Pizzetti F, Fullana Ó et al. Influence of the core formulation on features and drug delivery ability of carbamate-based nanogels. Int. J. Mol. Sci. 21(6621), (2020).
  • Sanson N, Rieger J. Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym. Chem. 1(7), 965–977 (2010).
  • Ding YF, Wei J, Li S, Pan YT, Wang LH, Wang R. Host-guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl. Mater. Interfaces 11(32), 28665–28670 (2019).
  • Cho H, Jammalamadaka U, Tappa K. Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies. Materials (Basel) 11(2), 302 (2018).
  • Mauri E, Perale G, Rossi F. Nanogel functionalization: a versatile approach to meet the challenges of drug and gene delivery. Appl. Nano Mater. 1, 6526–6541 (2018).
  • Pinelli F, Sacchetti A, Perale G, Rossi F. Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery? Ther. Deliv. 11(7), 401–404 (2020).
  • Pinelli F, Perale G, Rossi F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels 6(1), 6 (2020).
  • Mauri E, Veglianese P, Papa S et al. Chemoselective functionalization of nanogels for microglia treatment. Eur. Polym. J. 94, 143–151 (2017).
  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv. Mater. 30(23), 1–34 (2018).
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Rel. 220, 600–607 (2015).
  • Kyriakopoulou K, Kefali E, Piperigkou Z, Bassiony H, Karamanos NK. Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell. Signal. 51, 99–109 (2018).
  • Furst AL, Klass SH, Francis MB. DNA Hybridization to control cellular interactions. Trends Biochem. Sci. 44(4), 342–350 (2019).
  • Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 4(4), 127–129 (2017).
  • Yang L, Shi P, Zhao G et al. Targeting cancer stem cell pathways for cancer therapy. Sig. Transduct. Target. Ther. 5, 8 (2020).
  • Zhang F, Gong S, Wu J, Li H, Oupicky D, Sun M. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy. Biomacromolecules 18(6), 1793–1802 (2017).
  • Chen J, He H, Deng C, Yin L, Zhong Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int. J. Pharm. 560, 57–64 (2019).
  • Ding L, Jiang Y, Zhang J, Klok H-A, Zhong Z. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. Biomacromolecules 19(2), 555–562 (2018).
  • Si X, Ma S, Xu Y et al. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. J. Control. Rel. 320, 83–95 (2020).
  • Shimizu T, Kishida T, Hasegawa U et al. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun. 367(2), 330–335 (2008).
  • Fujii H, Shin-Ya M, Takeda S et al. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Sci. 105(12), 1616–1625 (2014).
  • Zhao W, Hu J, Gao W. Glucose oxidase–polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS Appl. Mater. Interfaces 9(28), 23528–23535 (2017).
  • Zhang Y, Wang F, Li M et al. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. 5(5), 1700821 (2018).
  • Seok HY, Sanoj Rejinold N, Lekshmi KM, Cherukula K, Park IK, Kim YC. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: in vitro and in vivo evaluation. J. Control. Rel. 280, 20–30 (2018).
  • Huang K, Shi B, Xu W et al. Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater. 27, 179–193 (2015).
  • Zheng Y, Lv XD, Xu Y, Cheng X, Wang X, Tang R. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo. Int. J. Biol. Macromol. 139, 277–289 (2019).
  • Cheng X, Qin J, Wang X et al. Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo. Eur. J. Pharm. Biopharm. 128, 247–258 (2018).
  • Peng S, Wang H, Zhao W et al. Zwitterionic polysulfamide drug nanogels with microwave augmented tumor accumulation and on-demand drug release for enhanced cancer therapy. Adv. Funct. Mater. 2001832, 1–12 (2020).
  • Xu L, Su T, Xu X, Zhu L, Shi L. Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy. J. Drug Deliv. Sci. Technol. 53, 101190 (2019).
  • Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114, 25–57 (2014).
  • Vismara I, Papa S, Veneruso V et al. Selective modulation of A1 astrocytes by drug-loaded nano-structured gel in spinal cord injury. ACS Nano 14(1), 360–371 (2020).
  • Nazemi Z, Nourbakhsh MS, Kiani S et al. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J. Control. Rel. 321, 145–158 (2020).
  • Papa S, Caron I, Erba E et al. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75, 13–24 (2016).
  • Wang XJ, Shu GF, Xu XL et al. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles. Biomaterials 217, 119326 (2019).
  • Li J, Liu Y, Xu H, Fu Q. Nanoparticle-delivered IRF5 siRNA Facilitates M1 to M2 transition, reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice. Inflammation 39(5), 1704–1717 (2016).
  • Vashist A, Kaushik A, Vashist A et al. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov. Today 23(7), 1436–1443 (2018).
  • Tsao CT, Kievit FM, Ravanpay A et al. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic t lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules 15(7), 2656–2662 (2014).
  • Giacomazza D, Picone P, Ditta L et al. Biodistribution of insulin-nanogels in mouse: a preliminary study for the treatment of Alzheimer’s Disease. Biophys. J. 112(3), 137a (2017).
  • Picone P, Ditta LA, Sabatino MA et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials 80, 179–194 (2016).
  • Rossi UG, Ierardi AM, Cariati M. Acute ischemic stroke. Acta Neurol. Taiwan 28(3), 84–85 (2019).
  • Ali MR, Salim Hossain M, Islam MA et al. Aspect of thrombolytic therapy: a review. Sci. World J. 2014, 586510 (2014).
  • Cui W, Liu R, Jin H et al. pH gradient difference around ischemic brain tissue can serve as a trigger for delivering polyethylene glycol-conjugated urokinase nanogels. J. Control. Rel. 225, 53–63 (2016).
  • Cui W, Liu R, Jin H, Huang Y, Liu W, He M. The protective effect of polyethylene glycol-conjugated urokinase nanogels in rat models of ischemic stroke when administrated outside the usual time window. Biochem. Biophys. Res. Commun. 523(4), 887–893 (2020).
  • Jin H, Tan H, Zhao L et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int. J. Pharm. 434(1–2), 384–390 (2012).
  • Teng Y, Jin H, Nan D et al. In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model. Bioact. Mater. 3(1), 102–109 (2018).
  • Dimmeler S. Cardiovascular disease review series. EMBO Mol. Med. 3(12), 697 (2011).
  • Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: a review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 6, https://doi.org/10.1177/2048004016687211 (2017).
  • Azegami T, Yuki Y, Hayashi K et al. Intranasal vaccination against angiotensin II type 1 receptor and pneumococcal surface protein A attenuates hypertension and pneumococcal infection in rodents. J. Hypertens. 36(2), 387–394 (2018).
  • Laha B, Das S, Maiti S, Sen KK. Novel propyl karaya gum nanogels for bosentan: in vitro and in vivo drug delivery performance. Colloids Surfaces B Biointerfaces 180, 263–272 (2019).
  • Cheraghi M, Namdari M, Daraee H, Negahdari B. Cardioprotective effect of magnetic hydrogel nanocomposite loaded N,α-L-rhamnopyranosyl vincosamide isolated from Moringa oleifera leaves against doxorubicin-induced cardiac toxicity in rats: in vitro and in vivo studies. J. Microencapsul. 34(4), 335–341 (2017).
  • Tang J, Cui X, Caranasos TG et al. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano 11(10), 9738–9749 (2017).
  • Moeini A, Pedram P, Makvandi P, Malinconico M, D’Ayala GG. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr. Polym. 223, 115839 (2020).
  • Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP. Wound healing - A literature review. An. Bras. Dermatol. 91(5), 614–620 (2016).
  • Grimaudo MA, Concheiro A, Alvarez-Lorenzo C. Nanogels for regenerative medicine. J. Control. Rel. 313, 148–160 (2019).
  • Hajialyani M, Tewari D, Sobarzo-Sánchez E, Nabavi SM, Farzaei MH, Abdollahi M. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int. J. Nanomed. 13, 5023–5043 (2018).
  • El-Feky GS, El-Banna ST, El-Bahy GS, Abdelrazek EM, Kamal M. Alginate coated chitosan nanogel for the controlled topical delivery of Silver sulfadiazine. Carbohydr. Polym. 177, 194–202 (2017).
  • Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl. Mater. Interfaces 10(16), 13304–13316 (2018).
  • Manconi M, Manca ML, Caddeo C et al. Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity. Eur. J. Pharm. Biopharm. 127, 244–249 (2018).
  • Pathan IB, Munde SJ, Shelke S, Ambekar W, Mallikarjuna Setty C. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and In-vivo evaluation. Int. J. Polym. Mater. Polym. Biomater. 68(4), 165–174 (2019).
  • Aslan C, Çelebi N, Değim IT, Atak A, Özer Ç. Development of interleukin-2 loaded chitosan-based nanogels using artificial neural networks and investigating the effects on wound healing in rats. AAPS PharmSciTech 18(4), 1019–1030 (2017).
  • Yang HN, Choi JH, Park JS, Jeon SY, Park KD, Park KH. Differentiation of endothelial progenitor cells into endothelial cells byheparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials 35(16), 4716–4728 (2014).
  • Iaquinta MR, Mazzoni E, Manfrini M et al. Innovative biomaterials for bone regrowth. Int. J. Mol. Sci. 20(3), 1–17 (2019).
  • Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog. Biomater. 8(4), 223–237 (2019).
  • Fujioka-Kobayashi M, Ota MS, Shimoda A et al. Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials 33(30), 7613–7620 (2012).
  • Gong T, Liu T, Zhang L et al. Design redox-sensitive drug-loaded nanofibers for bone reconstruction. ACS Biomater. Sci. Eng. 4(1), 240–247 (2018).
  • Alles N, Soysa NS, Hussain MA et al. Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur. J. Pharm. Sci. 37(2), 83–88 (2009).
  • Kato N, Hasegawa U, Morimoto N et al. Nanogel-based delivery system enhances PGE2 effects on bone formation. J. Cell. Biochem. 101(5), 1063–1070 (2007).
  • Suresh K. Novel topical drug carriers as a tool for treatment of psoriasis: progress and advances. African J. Pharm. Pharmacol. 7(5), 138–147 (2013).
  • Masson W, Lobo M, Molinero G. Psoriasis and cardiovascular risk: a comprehensive review. Adv. Ther. 37(5), 2017–2033 (2020).
  • Panonnummal R, Jayakumar R, Sabitha M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur. J. Pharm. Sci. 96, 193–206 (2017).
  • Panonnummal R, Sabitha M. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int. J. Biol. Macromol. 110, 245–258 (2018).
  • Panonnummal R, Jayakumar R, Anjaneyan G, Sabitha M. In vivo anti-psoriatic activity, biodistribution, sub-acute and sub-chronic toxicity studies of orally administered methotrexate loaded chitin nanogel in comparison with methotrexate tablet. Int. J. Biol. Macromol. 110, 259–268 (2018).
  • Kumar S, Singh KK, Rao R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul. 36(2), 140–155 (2019).
  • Feng H, Wu R, Zhang S et al. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice. J. Dermatol. 47(2), 147–154 (2020).
  • Yurdasiper A, Ertan G, Heard CM. Enhanced delivery of naproxen to the viable epidermis from an activated poly N-isopropylacrylamide (PNIPAM) Nanogel: skin penetration, modulation of COX-2 expression and rat paw oedema. Nanomedicine 14(7), 2051–2059 (2018).
  • Yeo J, Lee J, Yoon S, Kim WJ. Tannic acid-based nanogel as an efficient anti-inflammatory agent. Biomater. Sci. 8(4), 1148–1159 (2020).
  • Aminu N, Chan SY, Yam MF, Toh SM. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int. J. Pharm. 570, 118659 (2019).
  • Onishi H, Ikeuchi-Takahashi Y, Kawano K, Hattori Y. Preparation of chondroitin sulfate-glycyl-prednisolone conjugate nanogel and its efficacy in rats with ulcerative colitis. Biol. Pharm. Bull. 42(7), 1155–1163 (2019).
  • Wu T, Liu T, Zhu X et al. PMAA nanogel controllably releases anti-IL-1β IgY for treating allergic rhinitis. J. Polym. Res. 26(8), 1–10 (2019).
  • Karlsen APH, Wetterslev M, Hansen SE, Hansen MS, Mathiesen O, Dahl JB. Postoperative pain treatment after total knee arthroplasty: a systematic review. PLos One 12(3), e0173107 (2017).
  • Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth. Prog. 59(2), 90–102 (2012).
  • Howard R, Carter B, Curry J et al. Analgesia review. Pediatr. Anesth. 18, 64–78 (2008).
  • Hoare T, Young S, Lawlor MW, Kohane DS. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater. 8(10), 3596–3605 (2012).
  • Rodrigues da Silva GH, Geronimo G, Ribeiro LNM et al. Injectable in situ forming nanogel: a hybrid alginate-NLC formulation extends bupivacaine anesthetic effect. Mater. Sci. Eng. C 109, 110608 (2020).
  • Beiranvand S, Karimi A. Effect of encapsulated Artemisia aucheri L Magnetic nanogel extract on shoulder block in rat. Drug Res. (Stuttg). 68(2), 65–71 (2018).
  • Liu Z, Qiao J, Nagy T, Xiong MP. ROS-triggered degradable iron-chelating nanogels: safely improving iron elimination in vivo. J. Control. Rel. 283, 84–93 (2018).
  • Yoon DY, Kim JC. In vivo residence duration of human growth hormone loaded in nanogels comprising cinnamoyl alginate, cinnamoyl Pluronic F127 and cinnamoyl poly(ethylene glycol). Int. J. Pharm. 509(1–2), 229–236 (2016).
  • Wu T, Liao W, Wang W et al. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr. Polym. 197, 403–413 (2018).
  • Otomo K, Koga T, Mizui M et al. Cutting edge: nanogel-based delivery of an inhibitor of CaMK4 to CD4 + T cells suppresses experimental autoimmune encephalomyelitis and lupus-like disease in mice. J. Immunol. 195(12), 5533–5537 (2015).
  • Fukuyama Y, Yuki Y, Katakai Y et al. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol. 8(5), 1144–1153 (2015).
  • Azegami T, Yuki Y, Sawada S et al. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol. 10(5), 1351–1360 (2017).
  • Anjum S, Gupta A, Sharma D et al. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mater. Sci. Eng. C 64, 157–166 (2016).
  • Zhang Q, Chen X, Geng S et al. Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: in vitro and in vivo characterization. J. Biomed. Mater. Res. - Part A 105(4), 1175–1183 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.