4,737
Views
0
CrossRef citations to date
0
Altmetric
Perspective

No Small Matter: A Perspective on Nanotechnology-Enabled Solutions to Fight COVID-19

, , , , & ORCID Icon
Pages 2411-2427 | Received 08 Jul 2020, Accepted 04 Aug 2020, Published online: 02 Sep 2020

References

  • Zhu N , ZhangD, WangWet al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med.382(8), 727–733 (2020).
  • Li Q , GuanX, WuPet al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med.382(13), 1199–1207 (2020).
  • Zhou P , YangX, WangXet al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579(7798), 270–273 (2020).
  • Xiao K , ZhaiJ, FengYet al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature583(7815), 286–289 (2020).
  • Andersen K , RambautA, LipkinW, HolmesE, GarryR. The proximal origin of SARS-CoV-2. Nat. Med.26(4), 450–452 (2020).
  • Matsuyama S , NaoN, ShiratoKet al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA117(13), 7001–7003 (2020).
  • Cui J , LiF, ShiZ. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol.17(3), 181–192 (2019).
  • Dömling A , GaoL. Chemistry and biology of SARS-CoV-2. Chem6(6), 1283–1295 (2020).
  • Ou X , LiuY, LeiXet al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun.11(1), 1620 (2020).
  • Lan J , GeJ, YuJet al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature581(7807), 215–220 (2020).
  • Shang J , YeG, ShiKet al. Structural basis of receptor recognition by SARS-CoV-2. Nature581(7807), 221–224 (2020).
  • Wrapp D , WangN, CorbettKet al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science367(6483), 1260–1263 (2020).
  • Hoffmann M , Kleine-WeberH, PöhlmannS. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell78(4), 779–84.e5 (2020).
  • Coutard B , ValleC, de LamballerieX, CanardB, SeidahN, DecrolyE. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res.176, 104742 (2020).
  • Shang J , WanY, LuoCet al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA117(21), 11727–11734 (2020).
  • Hoffmann M , Kleine-WeberH, SchroederSet al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181(2), 271–80.e8 (2020).
  • Du L , HeY, ZhouY, LiuS, ZhengBJ, JiangS. The spike protein of SARS-CoV – a target for vaccine and therapeutic development. Nat. Rev. Microbiol.7(3), 226–236 (2009).
  • Romano M , RuggieroA, SquegliaF, MagaG, BerisioR. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells9(5), 1267 (2020).
  • Gao Y , YanL, HuangYet al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science368(6492), 779–782 (2020).
  • Zhang L , LinD, SunXet al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science368(6489), 409–412 (2020).
  • Hamming I , TimensW, BulthuisM, LelyA, NavisG, van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol.203(2), 631–637 (2004).
  • Sungnak W , HuangN, BécavinCet al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med.26(5), 681–687 (2020).
  • Ziegler CGK , AllonSJ, NyquistSKet al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell181(5), 1016–35.e19 (2020).
  • Brook CE , BootsM, ChandranKet al. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. Elife9, e48401 (2020).
  • Hou Y , OkudaK, EdwardsCet al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell182(2), 429–46.e14 (2020).
  • Wang K , ChenW, ZhouYSet al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. doi: 10.1101/2020.03.14.988345 (2020) ( Online).
  • Crosnier C , BustamanteLY, BartholdsonSJet al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature480(7378), 534–537 (2011).
  • Amraie R , NapoleonMA, YinWet al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in lung and kidney epithelial and endothelial cells. BioRxiv. doi: 10.1101/2020.06.22.165803 (2020) ( Online).
  • Jeffers SA , TusellSM, Gillim-RossLet al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA101(44), 15748–15753 (2004).
  • Gupta A , MadhavanMV, SehgalKet al. Extrapulmonary manifestations of COVID-19. Nat. Med.26(7), 1017–1032 (2020).
  • Monteil V , KwonH, PradoPet al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell181(4), 905.e7–913.e7 (2020).
  • Varga Z , FlammerA, SteigerPet al. Endothelial cell infection and endotheliitis in COVID-19. Lancet395(10234), 1417–1418 (2020).
  • Gandhi RT , LynchJB, DelRio C. Mild or moderate COVID-19. N. Engl. J. Med. doi: 10.1056/NEJMcp2009249 (2020) ( Epub ahead of print).
  • Berlin DA , GulickRM, MartinezFJ. Severe COVID-19. N. Engl. J. Med. doi: 10.1056/NEJMcp2009575 (2020) ( Epub ahead of print).
  • Zhou F , YuT, DuRet al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet395(10229), 1054–1062 (2020).
  • Weiss P , MurdochDR. Clinical course and mortality risk of severe COVID-19. Lancet395(10229), 1014–1015 (2020).
  • Tay MZ , PohCM, RéniaL, MacAryPA, NgLFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol.20(6), 363–374 (2020).
  • Hirano T , MurakamiM. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity52(5), 731–733 (2020).
  • Moore JB , JuneCH. Cytokine release syndrome in severe COVID-19. Science368(6490), 473–474 (2020).
  • Ledford H . Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature582(7813), 469 (2020).
  • Mehta P , McAuleyD, BrownM, SanchezE, TattersallR, MansonJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet395(10229), 1033–1034 (2020).
  • Ritchie AI , SinganayagamA. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?Lancet395(10230), 1111 (2020).
  • George PM , WellsAU, JenkinsRG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30225-3 (2020) ( Epub ahead of print).
  • Liu J , LiS, LiuJet al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine55, 102763 (2020).
  • Kuppalli K , RasmussenA. A glimpse into the eye of the COVID-19 cytokine storm. EBioMedicine55, 102789 (2020).
  • Barnes BJ , AdroverJM, Baxter-StoltzfusAet al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med.217(6), e20200652 (2020).
  • Zuo Y , YalavarthiS, ShiHet al. Neutrophil extracellular traps in COVID-19. JCI Insight5(11), 138999 (2020).
  • Zhang X , TanY, LingYet al. Viral and host factors related to the clinical outcome of COVID-19. Nature583(7816), 437–440 (2020).
  • Guan WJ , NiZY, HuYet al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med.382(18), 1708–1720 (2020).
  • Giamarellos-Bourboulis EJ , NeteaMG, RovinaNet al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe27(6), 992–1000.e3 (2020).
  • Zheng M , GaoY, WangGet al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol.17(5), 533–535 (2020).
  • Mazzoni A , SalvatiL, MaggiLet al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest. doi: 10.1172/JCI138554 (2020) ( Epub ahead of print).
  • Mathew D , GilesJR, BaxterAEet al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science (2020) ( Epub ahead of print).
  • Blanco-Melo D , Nilsson-PayantBE, LiuWCet al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell181(5), 1036–45.e9 (2020).
  • Zhou Z , RenL, ZhangLet al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe27(6), 883–90.e2 (2020).
  • Laing AG , LorencA, delMolino del Barrio Iet al. A consensus COVID-19 immune signature combines immuno-protection with discrete sepsis-like traits associated with poor prognosis. MedRxiv. doi: 10.1101/2020.06.08.20125112 (2020) ( Online).
  • Ellinghaus D , DegenhardtF, BujandaLet al. Genomewide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med. doi: 10.1056/NEJMoa2020283 (2020) ( Epub ahead of print).
  • COVID-19 Host Genetics Initiative . The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet.28(6), 715–718 (2020).
  • Wilk AJ , RustagiA, ZhaoNQet al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med.26(7), 1070–1076 (2020).
  • Wen W , SuW, TangHet al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov.6, 31 (2020).
  • Liao M , LiuY, YuanJet al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med.26(6), 842–844 (2020).
  • Chua RL , LukassenS, TrumpSet al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol.38, 970–979 (2020) ( Epub ahead of print).
  • Kupferschmidt K , CohenJ. Race to find COVID-19 treatments accelerates. Science367(6485), 1412–1413 (2020).
  • Li G , DeClercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov.19(3), 149–150 (2020).
  • Wang Q , WuJ, WangHet al. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell182(2), 417–28.e13 (2020).
  • Cao X . COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol.20(5), 269–270 (2020).
  • Xu X , HanM, LiTet al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci. USA117(20), 10970–10975 (2020).
  • Toniati P , PivaS, CattaliniMet al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun. Rev.19(7), 102568 (2020).
  • Harrison C . Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol.38(4), 379–381 (2020).
  • Ledford H . Chloroquine hype is derailing the search for coronavirus treatments. Nature580(7805), 573 (2020).
  • Savarino A , DiTrani L, DonatelliI, CaudaR, CassoneA. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis.6(2), 67–69 (2006).
  • Hu T , FriemanM, WolframJ. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol.15(4), 247–249 (2020).
  • Thorens B , VassalliP. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature321(6070), 618–620 (1986).
  • te Velthuis AJW , vanden Worm SH, SimsAC, BaricRS, SnijderEJ, van HemertMJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog.6(11), e1001176 (2010).
  • Wang M , CaoR, ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.30(3), 269–271 (2020).
  • Meyerowitz E , VannierA, FriesenMet al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J.34(5), 6027–6037 (2020).
  • Hoffmann M , MösbauerK, Hofmann-WinklerHet al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature doi: 10.1038/s41586-020-2575-3 (2020) ( Epub ahead of print).
  • Maisonnasse P , GuedjJ, ContrerasVet al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature doi: 10.1038/s41586-020-2558-4 (2020) ( Epub ahead of print).
  • Pushpakom S , IorioF, EyersPet al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov.18(1), 41–58 (2018).
  • Gordon DE , JangGM, BouhaddouMet al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature583(7816), 459–468 (2020).
  • Zhou Y , HouY, ShenJet al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov.6, 14 (2020).
  • Jin Z , DuX, XuYet al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature582(7811), 289–293 (2020).
  • Riva L , YuanS, YinXet al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature10.1038/s41586-020-2577-1 (2020) ( Epub ahead of print).
  • Landrigan PJ , FullerR, AcostaNJRet al. The Lancet Commission on pollution and health. Lancet391(10119), 462–512 (2018).
  • Stone V , MillerMR, CliftMJDet al. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ. Health Perspect.125(10), 106002 (2017).
  • Al-Kindi S , BrookR, BiswalS, RajagopalanS. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0371-2 (2020) ( Epub ahead of print).
  • Ogen Y . Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ.726, 138605 (2020).
  • Chudnovsky AA . Letter to editor regarding Ogen, Y. 2020 paper: “Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality”. Sci. Total Environ.740, 139236 (2020).
  • Pisoni E , van DingenenR. Comment to the paper “Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality”, by Ogen, 2020. Sci. Total Environ.726, doi: 10.1016/j.scitotenv.2020.138605 (2020) ( Epub ahead of print).
  • Zhu Y , XieJ, HuangF, CaoL. Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ.727, 138704 (2020).
  • Wu X , NetheryR, SabathB, BraunD, DominiciF. Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. MedRxiv. doi: 10.1101/2020.04.05.20054502 (2020) ( Epub ahead of print).
  • Liang D , ShiL, ZhaoJet al. Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the United States. MedRxiv. doi: 10.1101/2020.05.04.20090746 (2020) ( Online).
  • Riccò M , RanzieriS, BalzariniF, BragazziNL, CorradiM. SARS-CoV-2 infection and air pollutants: correlation or causation?Sci. Total Environ.734, 139489 (2020).
  • van Doremalen N , BushmakerT, MorrisDet al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med.382(16), 1564–1567 (2020).
  • Chin AWH , ChuJTS, PereraMRAet al. Stability of SARS-CoV-2 in different environmental conditions. Lancet doi: 10.1016/S2666-5247(20)30003-3 (2020) ( Epub ahead of print).
  • Zhang R , LiY, ZhangAL, WangY, MolinaMJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl Acad. Sci. USA117(26), 14857–14863 (2020).
  • Setti L , PassariniF, DeGennaro Get al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ. Res.188, 109754 (2020).
  • Domingo JL , MarquèsM, RoviraJ. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. Environ. Res. doi: 10.1016/j.envres.2020.109861 (2020) ( Epub ahead of print).
  • Monopoli MP , ÅbergC, SalvatiA, DawsonKA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol.7(12), 779–786 (2012).
  • Pietroiusti A , CampagnoloL, FadeelB. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small9(9–10), 1557–1572 (2013).
  • Walczyk D , BombelliFB, MonopoliMP, LynchI, DawsonKA. What the cell “sees” in bionanoscience. J. Am. Chem. Soc.132(16), 5761–5768 (2010).
  • Salvati A , PitekAS, MonopoliMPet al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol.8(2), 137–143 (2013).
  • Tonigold M , SimonJ, EstupinanDet al. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat. Nanotechnol.13(9), 862–869 (2018).
  • Ezzat K , PernemalmM, PålssonSet al. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nat. Commun.10(1), 2331 (2019).
  • Pitek AS , WenAM, ShuklaS, SteinmetzNF. The protein corona of plant virus nanoparticles influences their dispersion properties, cellular interactions, and in vivo fates. Small12(13), 1758–1769 (2016).
  • Berardi A , BaldelliBombelli F, ThuenemannEC, LomonossoffGP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. Nanoscale11(5), 2306–2316 (2019).
  • Pollok S , GinterT, GünzelKet al. Interferon alpha-armed nanoparticles trigger rapid and sustained STAT1-dependent anti-viral cellular responses. Cell Signal.25(4), 989–998 (2013).
  • Wang Z , WangC, LiuSet al. Specifically formed corona on silica nanoparticles enhances transforming growth factor β1 activity in triggering lung fibrosis. ACS Nano11(2), 1659–1672 (2017).
  • Shvedova AA , KaganVE, FadeelB. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol.50, 63–88 (2010).
  • Sportelli MC , IzziM, KukushkinaEAet al. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials 10(4), 802 (2020).
  • Sivasankarapillai VS , PillaiAM, RahdarAet al. On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: possible strategies and first challenges. Nanomaterials10(5), E852 (2020).
  • Nasrollahzadeh M , SajjadiM, SoufiGJ, IravaniS, VarmaRS. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials10(6), E1072 (2020).
  • Yang B , ShiJ. Developing new cancer nanomedicines by repurposing old drugs. Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202004317 (2020) ( Epub ahead of print).
  • Loczechin A , SéronK, BarrasAet al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces11(46), 42964–42974 (2019).
  • Barras A , PagneuxQ, SaneFet al. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl. Mater. Interfaces8(14), 9004–9013 (2018).
  • Fasting C , SchalleyCA, WeberMet al. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. Engl.51(42), 10472–10498 (2012).
  • Lauster D , KlenkS, LudwigKet al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat. Nanotechnol.15(5), 373–379 (2020).
  • Nie C , ParshadB, BhatiaSet al. Topology-matching design of an influenza-neutralizing spiky nanoparticle-based inhibitor with a dual mode of action. Angew. Chem. Int. Ed. Engl. doi: 10.1002/ange.202004832 (2020) ( Epub ahead of print).
  • Nie C , StadtmüllerM, YangHet al. Spiky nanostructures with geometry-matching topography for virus inhibition. Nano Lett.20(7), 5367–5375 (2020).
  • Cagno V , AndreozziP, D’AlicarnassoMet al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater.17(2), 195–203 (2018).
  • Tiwari V , BeerJC, SankaranarayananNV, Swanson-MungersonM, DesaiUR. Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov. Today25(8), 1535–1544 (2020).
  • Thamphiwatana S , AngsantikulP, EscajadilloTet al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl Acad. Sci. USA114(43), 11488–11493 (2017).
  • Hu CM , FangRH, WangKCet al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature526(7571), 118–121 (2015).
  • Li M , LiS, ZhouHet al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun.11(1), 1126 (2020).
  • Rao L , WangW, MengQet al. A biomimetic nanodecoy traps Zika virus to prevent viral infection and fetal microcephaly development. Nano Lett.19(4), 2215–2222 (2018).
  • Zhang Q , HonkoA, ZhouJet al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett.20(7), 5570–5574 (2020).
  • Hu CM , FangRH, CoppJ, LukBT, ZhangL. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol.8(5), 336–340 (2013).
  • Chen H , FangZ, ChenYet al. Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl. Mater. Interfaces9(46), 39953–39961 (2017).
  • Wei X , ZhangG, RanDet al. T-cell-mimicking nanoparticles can neutralize HIV infectivity. Adv. Mater.30(45), e1802233 (2018).
  • Gao C , HuangQ, LiuCet al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun.11(1), 2622 (2020).
  • Kuba K , ImaiY, RaoSet al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med.11(8), 875–879 (2005).
  • Imai Y , KubaK, RaoSet al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature436(7047), 112–116 (2005).
  • Zou Z , YanY, ShuYet al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat. Commun.5, 3594 (2014).
  • Vaduganathan M , VardenyO, MichelT, McMurrayJ, PfefferM, SolomonS. Renin–angiotensin–aldosterone system inhibitors in patients with COVID-19. N. Engl. J. Med.382(17), 1653–1659 (2020).
  • Lei C , QianK, LiTet al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat. Commun.11(1), 2070 (2020).
  • Bagalkot V , DeiuliisJA, RajagopalanS, MaiseyeuA. “Eat me” imaging and therapy. Adv. Drug Deliv. Rev.99(Pt A), 2–11 (2016).
  • Sun Y , GuoF, ZouZet al. Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part. Fibre Toxicol.12, 4 (2015).
  • Inal JM . Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy. Clin. Sci.134(12), 1301–1304 (2020).
  • Batlle D , WysockiJ, SatchellK. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy?Clin. Sci.134(5), 543–545 (2020).
  • Wang Y , CaiR, ChenC. The nano-bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc. Chem. Res.52(6), 1507–1518 (2019).
  • Manjili RH , ZareiM, HabibiM, ManjiliMH. COVID-19 as an acute inflammatory disease. J. Immunol.205(1), 12–19 (2020).
  • Vardhana SA , WolchokJD. The many faces of the anti-COVID immune response. J. Exp. Med.217(6), e20200678 (2020).
  • Chauhan G , MadouMJ, KalraS, ChopraV, GhoshD, Martinez-ChapaSO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano.14(7), 7760–7782 (2020).
  • Shin MD , ShuklaS, ChungYHet al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol.15, 646–655 (2020).
  • Weiss C , CarriereM, FuscoLet al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano14(6), 6383–6406 (2020).
  • Vabret N , BrittonGJ, GruberCet al. The Sinai Immunology Review Project. Immunology of COVID-19: current state of the science. Immunity52(6), 910–941 (2020).
  • Cyranoski D . Profile of a killer: the complex biology powering the coronavirus pandemic. Nature581(7806), 22–26 (2020).
  • London AJ , KimmelmanJ. Against pandemic research exceptionalism. Science368(6490), 476–477 (2020).
  • Singer DS . NCI’s work to advance cancer research while responding to the COVID-19 pandemic. Cancer Cell37(6), 746–748 (2020).
  • Fadeel B , FarcalL, HardyBet al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol.13(7), 537–543 (2018).