446
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanotechnology-Assisted Microfluidic Systems: From Bench to Bedside

ORCID Icon, , , , , , ORCID Icon, , & ORCID Icon show all
Pages 237-258 | Received 08 Sep 2020, Accepted 08 Dec 2020, Published online: 27 Jan 2021

References

  • Ahmadi S , KamaladiniH, HaddadiF, SharifmoghadamMR. Thiol-capped gold nanoparticle biosensors for rapid and sensitive visual colorimetric detection of klebsiella pneumoniae. J. Fluoresc.28(4), 987–998 (2018).
  • Maghsoudi S , ShahrakiBT, RabieeNet al. Burgeoning polymer nano blends for improved controlled drug release: a review. Int. J. Nanomed.15, 4363 (2020).
  • Rabiee N , YarakiMT, GarakaniSMet al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials232, 119707 (2020).
  • Ghadiri AM , RabieeN, BagherzadehMet al. Green synthesis of CuO-and Cu2O-NPs in assistance with high-gravity: the flowering of nanobiotechnology. Nanotechnology31(42), 425101 (2020).
  • Kiani M , BagherzadehM, MeghdadiSet al. Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg 2+, Zn 2+ and Cd 2+. N. J. Chem.44(27), 11841–11852 (2020).
  • Yang RJ , ChangCC, ChenJK, PanYJ. Microfluidic sample manipulation. In: Encyclopedia of Microfluidics and Nanofluidics.LiD ( Ed.). Springer, MA, USA, 1189–1194 (2008).
  • Maia FR , ReisRL, OliveiraJM. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine24, 102139 (2020).
  • Ahmadi S , RabieeN, BagherzadehMet al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today34, 100914 (2020).
  • Rabiee N , BagherzadehM, GhasemiAet al. Point-of-use rapid detection of sars-cov-2: nanotechnology-enabled solutions for the covid-19 pandemic. Int. J. Mol. Sci.21(14), 5126 (2020).
  • Kiani M , RabieeN, BagherzadehMet al. High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine30, 102297 (2020).
  • Chandrasekaran A , AbduljawadM, MoraesC. Have microfluidics delivered for drug discovery?Expert. Opin. Drug. Discov.11(8), 745–748 (2016).
  • Nasr SM , RabieeN, HajebiSet al. Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine. Int. J. Nanomed.15, 4205 (2020).
  • Hasanzadeh A , JahromiMaM, AbdoliAet al. Photoluminescent carbon quantum dot/poly-l-lysine core-shell nanoparticles: a novel candidate for gene delivery. J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2020.102118 (2020) ( In Press).
  • Kiani M , RabieeN, BagherzadehMet al. Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: a relationship between surface morphology, Photocatalytic and biomedical applications. Nanomedicine doi: 10.1016/j.nano.2020.102331 (2020) ( Epub ahead of print).
  • Kharati M , ForoutanparsaS, RabieeM, SalarianR, RabieeN, RabieeG. Early diagnosis of multiple sclerosis based on optical and electrochemical biosensors: comprehensive perspective. Curr. Anal. Chem.16(5), 557–569 (2020).
  • Su H , LiS, JinYet al. Nanomaterial-based biosensors for biological detections. Adv. Health Care Technol.3, 19–29 (2017).
  • Shahraki BT , MaghsoudiS, FatahiYet al. The flowering of mechanically interlocked molecules: novel approaches to the synthesis of rotaxanes and catenanes. Coord. Chem. Rev.423, 213484 (2020).
  • Nik AB , ZareH, RazaviSSet al. Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater.299, 110115 (2020).
  • Rabiee N , BagherzadehM, TavakolizadehM, PourjavadiA, AtarodM, WebsterTJ. Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. Int. J. Polymer. Mater. Polymer. Biomater. doi: 10.1080/00914037.2020.1809405 (2020) ( Epub ahead of print).
  • Rabiee N , AhmadvandS, AhmadiSet al. Carbosilane dendrimers: drug and gene delivery applications. J. Drug Deliv. Sci. Technol.59, 101879 (2020).
  • Ghasemi A , RabieeN, AhmadiSet al. Optical assays based on colloidal inorganic nanoparticles. Analyst143(14), 3249–3283 (2018).
  • Arduini F , CintiS, ScognamiglioV, MosconeD. Nanomaterial-based sensors. In: Handbook of Nanomaterials in Anal. Chem.HussainCM ( Ed.). Elsevier, doi: 10.1016/B978-0-12-816699-4.00013-X, 329–359 (2020).
  • Rabiee N , BagherzadehM, GhadiriAMet al. High-gravity-assisted green synthesis of NiO-NPs anchored on the surface of biodegradable nanobeads with potential biomedical applications. J. Biomed. Nanotechnol.16(4), 520–530 (2020).
  • Rabiee N , BagherzadehM, KianiMet al. High gravity-assisted green synthesis of ZnO nanoparticles via allium ursinum: conjoining nanochemistry to neuroscience. Nano Express1(2), 020025 (2020).
  • Rabiee N , BagherzadehM, GhadiriAMet al. Green synthesis of ZnO NPs via salvia hispanica: evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition and photocatalytic activities. J. Biomed. Nanotechnol.16(4), 456–466 (2020).
  • Choi S , GoryllM, SinLYM, WongPK, ChaeJ. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluidics Nanofluidics10(2), 231–247 (2011).
  • Kharati M , RabieeM, Rostami-NejadMet al. Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomed. Phys. Eng. Express6(5), 055015 (2020).
  • Rabiee N , BagherzadehM, KianiM, GhadiriAM. Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv. Powder Technol.31(4), 1402–1411 (2020).
  • Nasseri B , TurkM, KosemehmetogluKet al. The pimpled gold nanosphere: A superior candidate for plasmonic photothermal therapy. Int. J. Nanomed.15, 2903 (2020).
  • Rabiee N , BagherzadehM, KianiMet al. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. J. Nanomed.15, 3983–3999 (2020).
  • Nasimi P , HaidariM. Medical use of nanoparticles: drug delivery and diagnosis diseases. Int. J. Green Nanotechnol.1, (2013). https://doi.org/10.1177/1943089213506978
  • Jarrige V , NieuwenhuisJH, Van SonJPHF, MartensMFWC, VissersJLM. A fast intraoperative PTH point-of-care assay on the philips handheld magnotech system. Langenbecks Arch. Chir.396(3), 337–343 (2011).
  • Hajebi S , MohammadiNasr S, RabieeNet al. Bioresorbable composite polymeric materials for tissue engineering applications. Int. J. Polymer. Mater. Polymer. Biomater.1–15 (2020).
  • Rabiee N , AhmadiS, ArabZet al. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review. Int. J. Nanomed.15, 4237 (2020).
  • Rabiee N , RabieeM, BagherzadehM, RezaeiN. COVID-19 and picotechnology: potential opportunities. Med. Hypotheses144, 109917 (2020).
  • Ahmadi S , RabieeN, FatahiYet al. Controlled gene delivery systems: nanomaterials and chemical approaches. J. Biomed. Nanotechnol.16(5), 553–582 (2020).
  • Giacomini KM , HuangS-M, TweedieDJet al. Membrane transporters in drug development. Nat. Rev.9(3), 215 (2010).
  • Kinch MS , HaynesworthA, KinchSL, HoyerD. An overview of FDA-approved new molecular entities: 1827–2013. Drug Discov. Today19(8), 1033–1039 (2014).
  • Ozsvári B , LambR, LisantiMP. Repurposing of FDA-approved drugs against cancer–Focus on metastasis. Aging (Albany NY)8(4), 567 (2016).
  • Mullard A . 2013 FDA drug approvals. Nat. Rev. Drug Discov.13(2), 85–89 (2014).
  • Munos B . Lessons from 60 years of pharmaceutical innovation. Nat. Rev.8(12), 959–968 (2009).
  • Force LM , AbdollahpourI, AdvaniSMet al. The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncol.20(9), 1211–1225 (2019).
  • Nasseri B , SoleimaniN, RabieeN, KalbasiA, KarimiM, HamblinMR. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron.117, 112–128 (2018).
  • Chang AY , CowlingK, MicahAEet al. Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050. Lancet393(10187), 2233–2260 (2019).
  • Frank TD , CarterA, JahagirdarDet al. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV6(12), e831–e859 (2019).
  • Stanaway JD , ParisiA, SarkarKet al. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis.19(12), 1312–1324 (2019).
  • Hajebi S , RabieeN, BagherzadehMet al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater.92, 1–18 (2019).
  • Rabiee N , KianiM, BagherzadehM, RabieeM, AhmadiS. Nanoparticle (NP)-Based Delivery Vehicles.Morgan & Claypool Publishers, Ca, USA, (2019).
  • Romero FA , JonesC, XuY, FenauxM, HalcombRL. The race to bash NASH: emerging targets and drug development in a complex liver disease. J. Med. Chem.63(10), 5031–5073 (2020).
  • Ploetz E , EngelkeH, LächeltU, WuttkeS. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater.30(41), 1909062 (2020).
  • Shaikh FA , KurtysE, KubassovaO, RoettgerD. Reporter gene imaging and its role in imaging-based drug development. Drug Discov. Today25(3), 582–592 (2020).
  • Zhang B , RadisicM. Organ-on-a-chip devices advance to market. Lab on a Chip17(14), 2395–2420 (2017).
  • Hansen CE , LamWA. Clinical implications of single-cell microfluidic devices for hematological disorders. Anal. Chem.89(22), 11881–11892 (2017).
  • Greenberg HM , DwyerEM, HochmanJS, SteinbergJS, EchtDS, PetersRW. Interaction of ischaemia and encainide/flecainide treatment: a proposed mechanism for the increased mortality in CAST I. Heart74(6), 631–635 (1995).
  • Culp DR , BerryI. Merck and the Vioxx debacle: deadly loyalty. J. Civl Rights Econ. Dev.22(1), 1 (2007).
  • Waxman HA . The lessons of Vioxx – drug safety and sales. N. Engl. J. Med.352(25), 2576–2578 (2005).
  • Gale KB , JafekRA, LambertJCet al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions3(3), 60 (2018).
  • Cui P , WangS. Application of microfluidic chip technology in pharmaceutical analysis: a review. J. Pharm. Anal.9(4), 238–247 (2019).
  • Balslev S , JorgensenAM, BilenbergBet al. Lab-on-a-chip with integrated optical transducers. Lab Chip6(2), 213–217 (2006).
  • Kim L . Overview of the microfluidic diagnostics commercial landscape. Methods. Mol. Biol.949, 65–83 (2013).
  • Mark D , HaeberleS, RothG, Von StettenF, ZengerleR. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev.39(3), 1153–1182 (2010).
  • Ren K , ZhouJ, WuH. Materials for microfluidic chip fabrication. Acc. Chem. Res.46(11), 2396–2406 (2013).
  • Zhu K , YuY, ChengY, TianC, ZhaoG, ZhaoY. All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces11(5), 4826–4832 (2019).
  • Gao R , LvZ, MaoYet al. SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers. ACS Sens.4(4), 938–943 (2019).
  • Gao R , TianX, LiQet al. Artificial blood vessel frameworks from 3D printing-based super-assembly as in vitro models for early diagnosis of intracranial aneurysms. Chem. Mater.32(7), 3188–3198 (2020).
  • Park J , HanDH, ParkJK. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip20(7), 1191–1203 (2020).
  • Gao R , SongX, ZhanCet al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem.314, 128081 (2020).
  • Martinez AW , PhillipsST, WhitesidesGM, CarrilhoE. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem.82(1), 3–10 (2010).
  • Huang L , ChenJ, YuZ, TangD. Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal. Chem.92(3), 2809–2814 (2020).
  • Chin CD , LinderV, SiaSK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip12(12), 2118–2134 (2012).
  • Gao H , YanC, WuW, LiJ. Application of microfluidic chip technology in food safety sensing. Sensors20(6), 1792 (2020).
  • Zarrintaj P , BakhshandehB, RezaeianI, HeshmatianB, GanjaliM. A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci. Rep.7(1), 1–12 (2017).
  • Chin CD , LinderV, SiaSK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip12(12), 2118–2134 (2012).
  • Ranjit Prakash A , AdamiaS, SiebenV, PilarskiP, PilarskiLM, BackhouseCJ. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sens. Actuators B Chem.113(1), 398–409 (2006).
  • Mastrangeli M , MilletS, PartnersT, RaaijJ. Organ-on-chip in development:towards a roadmap for organs-on-chip. ALTEX36(4), 650–668 (2019).
  • Nilghaz A , GuanL, TanW, ShenW. Advances of paper-based microfluidics for diagnostics: the original motivation and current status. ACS Sens.1(12), 1382–1393 (2016).
  • Ahmadi S , RabieeN, BagherzadehMet al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today34, 100914 (2020).
  • Miernicki M , HofmannT, EisenbergerI, VonDer Kammer F, PraetoriusA. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol.14(3), 208–216 (2019).
  • Mcneil SE . Nanotechnology for the biologist. J. Leukoc. Biol.78(3), 585–594 (2005).
  • El-Sayed A , KamelM. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res.27(16), 19200–19213 (2020).
  • Zhang J , MisraRDK. Nanomaterials in microfluidics for disease diagnosis and therapy development. Mater. Technol.34(2), 92–116 (2019).
  • Choi J-H , LeeJ, OhB-K. Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. Biochip J.10(4), 331–345 (2016).
  • Wang M , XiaoY, LinL, ZhuX, DuL, ShiX. A microfluidic chip integrated with hyaluronic acid-functionalized electrospun chitosan nanofibers for specific capture and nondestructive release of CD44-overexpressing circulating tumor cells. Bioconjug. Chem.29(4), 1081–1090 (2018).
  • Xu T , YuH, XuPet al. Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber. Lab Chip14(6), 1206–1214 (2014).
  • Nunna BB , MandalD, LeeJUet al. Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg.6(1), 3 (2019).
  • Singh N , RaiP, AliMAet al. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. J. Mater. Chem. B7(24), 3826–3839 (2019).
  • Mottaghitalab F , FarokhiM, FatahiY, AtyabiF, DinarvandR. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J. Control. Release295, 250–267 (2019).
  • Gorjikhah F , DavaranS, SalehiRet al. Improving “lab-on-a-chip” techniques using biomedical nanotechnology: a review. Artif. Cells Nanomed. Biotechnol.44(7), 1609–1614 (2016).
  • Garcia-Cordero JL , RiccoAJ. Lab-on-a-chip (general philosophy). In: Encyclopedia of Microfluidics and NanofluidicsLiD ( Ed.). Springer, MA, USA, 962–969 (2008).
  • Medina-Sánchez M , MiserereS, MerkoçiA. Nanomaterials and lab-on-a-chip technologies. Lab Chip12(11), 1932–1943 (2012).
  • Singh P , PandeySK, SinghJ, SrivastavaS, SachanS, SinghSK. Biomedical perspective of electrochemical nanobiosensor. Nanomicro Lett.8(3), 193–203 (2016).
  • Hong Y , HuhY-M, YoonDS, YangJ. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater.2012, 759830 (2012).
  • Amendola V . Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method. Phys. Chem.18(3), 2230–2241 (2016).
  • Wang J , LinW, CaoE, XuX, LiangW, ZhangX. Surface plasmon resonance sensors on raman and fluorescence spectroscopy. Sensors17(12), 2719 (2017).
  • Escobedo C , ChouY-W, RahmanMet al. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst138(5), 1450–1458 (2013).
  • Tsao CW . Polymer microfluidics: simple, low-Cost fabrication process bridging academic lab research to commercialized production. Micromachines7(12), 255 (2016).
  • Gong X , WenW. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. Biomicrofluidics3, 12007 (2009).
  • Sadabadi H , BadilescuS, PackirisamyM, WüthrichR. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens. Bioelectron.44, 77–84 (2013).
  • Ghasemi A , AmiriH, ZareHet al. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluidics Nanofluidics21(9), 151 (2017).
  • Venkatanarayanan A , CrowleyK, LestiniE, KeyesTE, RuslingJF, ForsterRJ. High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens. Bioelectron.31(1), 233–239 (2012).
  • Chałupniak A , MerkoçiA. Graphene oxide–poly(dimethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces9(51), 44766–44775 (2017).
  • Li X , ZhaoC, LiuX. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst. Nanoeng.1(1), 15014 (2015).
  • Upasham Sayali , TanakAmbalika, PrasadS. Cardiac troponin biosensors: where are we now?Adv. Health Care Technol.4, 1–13 (2018).
  • Tate JR , PanteghiniM.. Measurement of cardiac troponins revisited. Biochim. Clin.32, 535–546 (2008).
  • Kauffman DR , StarA. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst135(11), 2790–2797 (2010).
  • Yuan G-J , XieJ-F, LiH-Het al. Thermally reduced graphene oxide/carbon nanotube composite films for thermal packaging applications. Materials13(2), 317 (2020).
  • Pandora Genomics LLC . US9417210 (2016).
  • Labrador Diagnostics LLC . US8822167 (2016).
  • Lin G , ZhangH, HuangL. Smart polymeric nanoparticles for cancer gene delivery. Mol. Pharm.12(2), 314–321 (2015).
  • Giouroudi I , KeplingerF. Microfluidic biosensing systems using magnetic nanoparticles. Int. J. Mol. Sci.14(9), 18535–18556 (2013).
  • Wang S , LiuN, ZhengL, CaiG, LinJ. A lab-on-chip device for the sample-in-result-out detection of viable Salmonella using loop-mediated isothermal amplification and real-time turbidity monitoring. Lab Chip20(13), 2296–2305 (2020).
  • Goluch E , StoevaS, LeeJ-S, ShaikhK, MirkinC, LiuC. A microfluidic detection system based upon a surface immobilized biobarcode assay. Biosens. Bioelectron.24, 2397–2403 (2009).
  • Zhang C , LvX, YasmeenS, QingH, DengY. Integrated microfluidic chip with nanobiosensor for rapid and label-free detection of a specific gene. Anal. Methods9(24), 3619–3625 (2017).
  • Zhao J , HashmiA, XuJ, XueW. A compact lab-on-a-chip nanosensor for glycerol detection. Appl. Phys. Lett.100, 3109 (2012).
  • Kim J , ElsnabJ, GehrkeC, LiJ, GaleBK. Microfluidic integrated multi-walled carbon nanotube (MWCNT) sensor for electrochemical nucleic acid concentration measurement. Sens. Actuators B Chem.185, 370–376 (2013).
  • Yang J , YuJ-H, RudiStrickler J, ChangW-J, GunasekaranS. Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectro.47, 530–538 (2013).
  • Van Den Berg A , MummeryCL, PassierR, VanDer Meer AD. Personalised organs-on-chips: functional testing for precision medicine. Lab Chip19(2), 198–205 (2019).
  • Huh D , HamiltonGA, IngberDE. From 3D cell culture to organs-on-chips. Trends Cell Biol.21(12), 745–754 (2011).
  • Lin A , SvedSkottvoll F, RaynerSet al. 3D cell culture models and organ-on-a-chip: meet separation science and mass spectrometry. Electrophoresis41(1–2), 56–64 (2020).
  • Rigat-Brugarolas LG , Elizalde-TorrentA, BernabeuMet al. A functional microengineered model of the human splenon-on-a-chip. Lab Chip14(10), 1715–1724 (2014).
  • Park J , LeeBK, JeongGS, HyunJK, LeeCJ, LeeSH. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of alzheimer's disease. Lab Chip15(1), 141–150 (2015).
  • Stucki AO , StuckiJD, HallSRRet al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip15(5), 1302–1310 (2015).
  • Abaci HE , GledhillK, GuoZ, ChristianoAM, ShulerML. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip15(3), 882–888 (2015).
  • Giacomelli E , BellinM, SalaLet al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development144(6), 1008–1017 (2017).
  • Yasotharan S , PintoS, SledJG, BolzS-S, GüntherA. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip15(12), 2660–2669 (2015).
  • Zhang B , RadisicM. Organ-on-a-chip devices advance to market. Lab Chip17(14), 2395–2420 (2017).
  • Wevers NR , Van VughtR, WilschutKJet al. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci. Rep.6(1), 38856 (2016).
  • Lanz HL , SalehA, KramerBet al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer17(1), 017–3709 (2017).
  • Beaurivage C , NaumovskaE, ChangXYet al. Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int. J. Mol. Sci.20(22), (2019).
  • Iontox LLC . US9631167 (2017).
  • Maoz BM , HerlandA, HenryOYFet al. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip17(13), 2294–2302 (2017).
  • Kratz SRA , HöllG, SchullerP, ErtlP, RothbauerM. Latest trends in biosensing for microphysiological organs-on-a-chip and body-on-a-chip systems. Biosensors9(3), 110 (2019).
  • Weltin A , HammerS, NoorF, KaminskiY, KieningerJ, UrbanG. Accessing 3D microtissue metabolism: lactate and oxygen monitoring in hepatocyte spheroids. Biosens. Bioelectron.87, 941–948 (2016).
  • Weltin A , SlotwinskiK, KieningerJet al. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip14(1), 138–146 (2013).
  • Shin SR , KilicT, ZhangYSet al. Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv. Sci.4(5), 1600522 (2017).
  • Zhang Y , BaiX, WangX, ShiuK-K, ZhuY, JiangH. Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem.86(19), 9459–9465 (2014).
  • Liu J , BoX, ZhaoZ, GuoL. Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens. Bioelectron.74, 71–77 (2015).
  • Ju J , ChenW. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem.87(3), 1903–1910 (2015).
  • Duarte Y , Márquez-MirandaV, MiossecMJ, González-NiloF. Integration of target discovery, drug discovery and drug delivery: a review on computational strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.11(4), e1554 (2019).
  • Neužil P , GiselbrechtS, LängeK, HuangTJ, ManzA. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev.11(8), 620–632 (2012).
  • Choi J-H , LeeJ, ShinW, ChoiJ-W, KimHJ. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. Nano Converg.3(1), 24 (2016).
  • Valencia PM , PridgenEM, RheeM, LangerR, FarokhzadOC, KarnikR. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano7(12), 10671–10680 (2013).
  • Li LL , LiX, WangHJSM. Microfluidic synthesis of nanomaterials for biomedical applications. Small Methods1(8), 1700140 (2017).
  • Shawgo RS , RichardsGrayson AC, LiY, CimaMJ. Biomems for drug delivery. Curr. Opin. Solid State Mater. Sci.6(4), 329–334 (2002).
  • Song P , TngDJH, HuR, LinG, MengE, YongK-T. An electrochemically actuated mems device for individualized drug delivery: an in vitro study. Adv. Healthc. Mater.2(8), 1170–1178 (2013).
  • Jackson J , ChenA, ZhangH, BurtH, ChiaoM. Design and near-infrared actuation of a gold nanorod–polymer microelectromechanical device for on-demand drug delivery. Micromachines9(1), 28 (2018).
  • Yang X , LiK, ZhangXet al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip18(3), 486–495 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.