62
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Magnetically Driven Treatments: Optimizing Performance by Mitigation of Eddy Currents

ORCID Icon, ORCID Icon & ORCID Icon
Pages 895-907 | Received 30 Sep 2020, Accepted 09 Mar 2021, Published online: 07 May 2021

References

  • Giordano N, Papakostas P, Battisti E et al. Magnetotherapy-a brief excursion through the centuries. Environmentalist 29, 157–160 (2009).
  • Jayaneththi VR, Aw K, Sharma M, Wen J, Svirskis D, McDaid AJ. Controlled transdermal drug delivery using a wireless magnetic microneedle patch: preclinical device development. Sens. Actuators B Chem. 297, 126708 (2019).
  • Eftekhari A, Dizaj SM, Chodari L et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 103, 1018–1027 (2018).
  • Angelakeris M. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta Gen. Subj. 1861(6), 1642–1651 (2017).
  • Blanco-Andujar C, Walter A, Cotin G et al. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine (Lond). 11(14), 1889–1910 (2016).
  • Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine (Lond). 7(9), 1443–1459 (2012).
  • Kim JH, Park NH, Park JY, Kim S-J. Magnetic resonance imaging and clinical features of chlorfenapyr-induced toxic leukoencephalopathy: a case report. J. Korean Soc. Radiol. 81(4), 985 (2020).
  • Scheltens P, Blennow K, Breteler MMB et al. Alzheimer’s disease. Lancet 388(10043), 505–517 (2016).
  • Ahmed HU, El-Shater Bosaily A, Brown LC et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071), 815–822 (2017).
  • Martinez-Boubeta C, Balcells L, Cristòfol R et al. Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine 6(2), 362–370 (2010).
  • Hockings PD, Hare JF, Reid DG. MRI instrumentation. In: Encyclopedia of Spectroscopy and Spectrometry 3rd Edition. Lindon JC, Tranter GE, Koppenaal DW ( Eds). Academic Press, MA, USA, 1622–1629 (2017).
  • Nowogrodzki A. The world’s strongest MRI machines are pushing human imaging to new limits. Nature 563(7729), 24–26 (2018).
  • Berger A. Magnetic resonance imaging. BMJ 324(7328), 35 (2002).
  • Hidalgo-Tobon SS. Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn. Reson. Part A 36A(4), 223–242 (2010).
  • Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394), 190–191 (1973).
  • Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond). 14(18), 2487–2514 (2019).
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7–30 (2020).
  • Beg S, Alharbi KS, Alruwaili NK et al. Nanotherapeutic systems for delivering cancer vaccines: recent advances. Nanomedicine (Lond). 15(15), 1527–1537 (2020).
  • Chen Y, Yang T, Chen S, Qi S, Zhang Z, Xu Y. Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells. J. Biochem. Mol. Toxicol. 34(5), e22474 (2020).
  • Ahmadian E, Khosroushahi AY, Eftekhari A, Farajnia S, Babaei H, Eghbal MA. Novel angiotensin receptor blocker, azilsartan induces oxidative stress and NFkB-mediated apoptosis in hepatocellular carcinoma cell line HepG2. Biomed. Pharmacother. 99, 939–946 (2018).
  • Angelakeris M. Magnetic particle hyperthermia. In: 21st Century Nanoscience – A Handbook. Sattler KD ( Ed.). CRC Press,FL, USA, (2020).
  • Myrovali E, Maniotis N, Samaras T, Angelakeris M. Spatial focusing of magnetic particle hyperthermia. Nanoscale Adv. 2(1), 408–416 (2020).
  • Spyridopoulou K, Makridis A, Maniotis N et al. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells. Nanotechnology 29(17), 175101 (2018).
  • Maniotis N, Makridis A, Myrovali E, Theopoulos A, Samaras T, Angelakeris M. Magneto-mechanical action of multimodal field configurations on magnetic nanoparticle environments. J. Magn. Magn. Mater. 470, 6–11 (2019).
  • Liang K, Tsarabaris P, Ktena A, Bi X, Hristoforou E. Smart stress annihilation in steels using residual stress distribution monitoring and localized induction heating. Metals (Basel) 10(6), 838 (2020).
  • Stigliano RV, Shubitidze F, Petryk JD, Shoshiashvili L, Petryk AA, Hoopes PJ. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int. J. Hyperth. 32(7), 735–748 (2016).
  • Colbert AP, Markov MS, Souder JS. Static magnetic field therapy: dosimetry considerations. J. Altern. Complement. Med. 14(5), 577–582 (2008).
  • Markov MS. How living systems recognize applied electromagnetic fields. Environmentalist 31(2), 89–96 (2011).
  • Ivkov R, DeNardo SJ, Daum W et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin. Cancer Res. 11(19 Pt 2), 7093S–7103S (2005).
  • Zurich Med Tech. SIM4LIFE. https://zmt.swiss/sim4life/
  • Maniotis N. Numerical simulation and characterization of systems for magneto-thermal and magneto-mechanical interaction with the living matter (2020). http://ikee.lib.auth.gr/record/319828/?ln=el OR http://ikee.lib.auth.gr/record/319828/files/GRI-2020-27607.pdf
  • Bejan A. Heat Transfer. John Wiley & Sons, NY, USA (1993).
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).
  • Maya HTT. Thermal Wizard. http://www.mayahtt.com/resources-hub/thermal-wizard/
  • Salloum M, Ma RH, Weeks D, Zhu L. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int. J. Hyperth. 24(4), 337–345 (2008).
  • Makridis A, Curto S, Van Rhoon GC, Samaras T, Angelakeris M. A standardisation protocol for accurate evaluation of specific loss power in magnetic hyperthermia. J. Phys. D Appl. Phys. 52(25), 255001 (2019).
  • Nakamura T, Fukuda K, Hayakawa K et al. Mechanism of burn injury during magnetic resonance imaging (MRI)--simple loops can induce heat injury. Front. Med. Biol. Eng. 11(2), 117–129 (2001).
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 24(6), 467–474 (2008).
  • Middione MJ, Loecher M, Moulin K, Ennis DB. Optimization methods for magnetic resonance imaging gradient waveform design. NMR Biomed. 33(12), e4308 (2020).
  • Sumser K, Neufeld E, Verhaart RF et al. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning. Int. J. Hyperth. 36(1), 800–810 (2019).
  • Sebeke L, Deenen DA, Maljaars E et al. Model predictive control for MR-HIFU-mediated, uniform hyperthermia. Int. J. Hyperth. 36(1), 1039–1049 (2019).
  • Lang J, Erdmann B, Seebass M. Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 46(9), 1129–1138 (1999).
  • Hadjidemetriou M, Kostarelos K. Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12(4), 288–290 (2017).
  • Purushotham S, Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J. Appl. Phys. 107(11), 114701 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.