2,347
Views
1
CrossRef citations to date
0
Altmetric
Research Article

DMSA-Coated Cubic Iron Oxide Nanoparticles as Potential Therapeutic Agents

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 925-941 | Received 15 Dec 2020, Accepted 22 Mar 2021, Published online: 21 May 2021

References

  • Xie W, Guo Z, Gao F et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8(12), 3284–3307 (2018).
  • Colombo M, Carregal-Romero S, Casula MF et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012).
  • Ruiz A, Morais PC, de Azevedo RB et al. Magnetic nanoparticles coated with dimercaptosuccinic acid: development, characterization, and application in biomedicine. J. Nanoparticle Res. 16(2589), 1–20 (2014).
  • Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 7, 3445–3471 (2012).
  • Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
  • Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater. Today 14(7–8), 330–338 (2011).
  • Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov. Today 19(4), 474–481 (2014).
  • Dadfar SM, Roemhild K, Drude NI et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 138, 302–325 (2019).
  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019, 3702518 (2019).
  • Dulinska-Litewka J, Lazarczyk A, Halubiec P et al. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Mater. (Basel) 12(4), 617 (2019).
  • Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine 14(3), 977–990 (2018).
  • Wierzbinski KR, Szymanski T, Rozwadowska N et al. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci. Rep. 8(1), 3682 (2018).
  • Palma SICJ, Marciello M, Carvalho A et al. Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J. Colloid Interface Sci. 437, 147–155 (2015).
  • Calero M, Gutierrez L, Salas G et al. Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine 10(4), 733–743 (2014).
  • Mejias R, Perez-Yague S, Gutierrez L et al. Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32(11), 2938–2952 (2011).
  • Mejias R, Perez-Yague S, Roca AG et al. Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine (Lond). 5(3), 397–408 (2010).
  • Cha Y, Kim M, Choa Y et al. Synthesis and characterizations of surface-coated superparamagentic magnetite nanoparticles. IEEE Trans. Magn. 46(2), 443–446 (2010).
  • Villanueva A, Canete M, Roca AG et al. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11), 115103 (2009).
  • Barick KC, Aslam M, Lin Y-P, Bahadur D, Prasad PV, Dravid VP. Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. J. Mater. Chem. 19(38), 7023–7029 (2009).
  • Xiong F, Zhu Z, Xiong C et al. Preparation, characterization of 2-deoxy-D-glucose functionalized dimercaptosuccinic acid-coated maghemite nanoparticles for targeting tumor cells. Pharm. Res. 29(4), 1087–1097 (2012).
  • Ruiz A, Salas G, Calero M et al. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomater. 9(5), 6421–6430 (2013).
  • Gas P, Miaskowski A. Specifying the ferrofluid parameters important from the viewpoint of magnetic fluid hyperthermia. Presented at: 2015 Selected Problems of Electrical Engineering and Electronics (WZEE). Kielce, Poland, (2015).
  • Monge-Fuentes V, Garcia MP, Tavares MCH et al. Biodistribution and biocompatibility of DMSA-stabilized maghemite magnetic nanoparticles in nonhuman primates (Cebus spp.). Nanomedicine (Lond). 6(9), 1529–1544 (2011).
  • Pardo A, Pujales R, Blanco M et al. Analysis of the influence of synthetic paramaters on the structure and physico-chemical properties of non-spherical iron oxide nanocrystals and their biological stability and compatibility. Dalt. Trans. 45(2), 797–810 (2016).
  • Cabrera LI, Somoza Á, Marco JF et al. Synthesis and surface modification of uniform MFe2O4 (M = Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities. J. Nanoparticle Res. 14(6), 873 (2012).
  • Kossatz S, Ludwig R, Dahring H et al. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm. Res. 31(12), 3274–3288 (2014).
  • Salas G, Casado C, Teran FJ et al. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 22(39), 21065–21075 (2012).
  • Martinez-Boubeta C, Simeonidis K, Makridis A et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3(1), 1652 (2013).
  • Zhen G, Muir BW, Moffat BA et al. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. 115, 327–334 (2011).
  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62(3), 284–304 (2010).
  • Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 39(8), 881–890 (2015).
  • Zhang L, Wang X, Zou J et al. DMSA-coated iron oxide nanoparticles greatly affect the expression of genes coding cysteine-rich proteins by their DMSA coating. Chem. Res. Toxicol. 28(10), 1961–1974 (2015).
  • Tsoukalas C, Psimadas D, Kastis GA et al. A novel metal-based imaging probe for targeted dual-modality SPECT/MR imaging of angiogenesis. Front. Chem. 6, 224 (2018).
  • Guardia P, Riedinger A, Nitti S et al. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. J. Mater. Chem. B 2(28), 4426–4434 (2014).
  • Bloemen M, Brullot W, Luong TT et al. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J. Nanopart. Res. 14(9), 1100 (2012).
  • Zhang L, He R, Gu H-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253(5), 2611–2617 (2006).
  • Mahdavi M, Ahmad M Bin, Haron MJ et al. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7), 7533–7548 (2013).
  • De Palma R, Peeters S, Van Bael MJ et al. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 19(7), 1821–1831 (2007).
  • Zhang S, Chen X, Gu C et al. The effect of iron oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res. Lett. 4(1), 70 (2008).
  • Valois CRA, Braz JM, Nunes ES et al. The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via a beta2 integrin-dependent pathway. Biomaterials 31(2), 366–374 (2010).
  • Zaitsev VS, Filimonov DS, Presnyakov IA et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid Interface Sci. 212(1), 49–57 (1999).
  • Westrum EF, Grønvold F. Magnetite (Fe3O4) Heat capacity and thermodynamic properties from 5 to 350 K, low-temperature transition. J. Chem. Thermodyn. 1(6), 543–557 (1969).
  • Soares PIP, Laia CAT, Carvalho A et al. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl. Surf. Sci. 383, 240–247 (2016).
  • Baharuddin AA, Ang BC, Abu Hussein NA et al. Mechanisms of highly stabilized ex-situ oleic acid-modified iron oxide nanoparticles functionalized with 4-pentynoic acid. Mater. Chem. Phys. 203, 212–222 (2018).
  • Zhang W, Chen J, Wang W et al. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell. Results Phys. 6, 606–613 (2016).
  • Nagesha DK, Plouffe BD, Phan M et al. Functionalization-induced improvement in magnetic properties of Fe3O4 nanoparticles for biomedical applications. J. Appl. Phys. 105(7), 07B317 (2009).
  • Woo K, Hong J, Ahn J-P. Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J. Magn. Magn. Mater. 293(1), 177–181 (2005).
  • Tharkeshwar AK, Trekker J, Vermeire W et al. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency. Sci. Rep. 7, 41408 (2017).
  • Liu Y, Wang J. Effects of DMSA-coated Fe3O4 nanoparticles on the transcription of genes related to iron and osmosis homeostasis. Toxicol. Sci. 131(2), 521–536 (2012).
  • Ghasempour S, Shokrgozar MA, Ghasempour R, Alipour M. Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies. Exp. Toxicol. Pathol. 67(10), 509–515 (2015).