133
Views
0
CrossRef citations to date
0
Altmetric
Review

Bioconjugated Nanometals and Cancer Therapy: A Pharmaceutical Perspective

ORCID Icon
Pages 1791-1811 | Received 11 Jan 2021, Accepted 18 Jun 2021, Published online: 23 Jul 2021

References

  • World Health Organization . Latest global cancer data: cancer burden rises to 18.1million new cases and 9.6 million cancer deaths in 2018. Press release 263 (2018).
  • Gulf News . Cancer cases to double by 2030 in Middle East. https://gulfnews.com/uae/health/cancer-cases-to-double-by-2030-in-middle-east-1.2215775 (2018)
  • Bray F , FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 68(6), 394–424 (2018).
  • Jiang T , JinK, LiuX, PangZ. Nanoparticles for tumor targeting. In: Biopolymer-based composites.JanaS, MaitiS, JanaS ( Eds). Woodhead Publishing, Cambridge, UK, 221–267 (2017).
  • Hasan S . A review on nanoparticles: their synthesis and types. Res. J. Recent. Sci.4( ISC-2014), 9–11 (2015).
  • Prado-López S , González-BallesterosN, CarmenRodríguez-Argüelles M. Nanometals in cancer diagnosis and therapy. In: Biomaterials in Clinical Practice.ZivicF, AffatatoS, TrajanovicM, SchnabelrauchM, GrujovicN, ChoyKW ( Eds). Springer, Cham, Switzerland, 407–428 (2018).
  • Bamrungsap S , ZhaoZ, ChenTet al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond.)7(8), 1253–1271 (2012).
  • Vinci G , RapaM. Noble metal nanoparticles applications: recent trends in food control. Bioengineering (Basel)6(1), 10 (2019).
  • Raja M , ArasiAG, RaoMG, AnandhiB. Noble metal nanoparticles in cancer therapy: properties challenges and clinical applications. Int. J. Adv. Res.5(9), 127–135 (2017).
  • Davis ME , ChenZG, ShinDM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov.7(9), 771–782 (2008).
  • Xue X , WangF, LiuX. Emerging functional nanomaterials for therapeutics. J. Mater. Chem.21(35), 13107–13127 (2011).
  • Fratoddi I , CartoniA, VendittiIet al. Gold nanoparticles functionalized by rhodamine B isothiocyanate: a new tool to control plasmonic effects. J. Colloid. Interface Sci.513, 10–19 (2018).
  • Nel A , XiaT, MädlerL, LiN. Toxic potential of materials at the nanolevel. Science311(5761), 622–627 (2006).
  • Sakhno O , YezhovP, HrynV, RudenkoV, SmirnovaT. Optical and nonlinear properties of photonic polymer nanocomposites and holographic gratings modified with noble metal nanoparticles. Polymers (Basel)12(2), 480 (2020).
  • Wu M , HuangS. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol.7(5), 738–746 (2017).
  • Samanta A , MedintzIL. Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale8(17), 9037–9095 (2016).
  • Graczyk A , PawlowskaR, JedrzejczykD, ChworosA. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules25(1), 204 (2020).
  • Conde J , DoriaG, BaptistaP. Noble metal nanoparticles applications in cancer. J. Drug. Deliv.2012, 751075 (2012).
  • Yeh YC , CreranB, RotelloVM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale4(6), 1871–1880 (2012).
  • Gurunathan S , LeeKJ, KalishwaralalK, SheikpranbabuS, VaidyanathanR, EomSH. Antiangiogenic properties of silver nanoparticles. Biomaterials30(31), 6341–6350 (2009).
  • Asharani PV , HandeMP, ValiyaveettilS. Anti-proliferative activity of silver nanoparticles. BMC Cell. Biol.10, 65 (2009).
  • Rai M , IngleAP, BirlaS, YadavA, SantosCA. Strategic role of selected noble metal nanoparticles in medicine. Crit. Rev. Microbiol.42(5), 696–719 (2016).
  • Iravani S , KorbekandiH, MirmohammadiSV, ZolfaghariB. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci.9(6), 385–406 (2014).
  • Stensberg MC , WeiQ, MclamoreES, PorterfieldDM, WeiA, SepulvedaMS. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond.)6(5), 879–898 (2011).
  • Long NV , ChienND, HayakawaT, HirataH, LakshminarayanaG, NogamiM. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology. Nanotechnology21(3), 035605 (2010).
  • Manikandan M , HasanN, WuHF. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials34(23), 5833–5842 (2013).
  • Shoshan MS , VonderachT, HattendorfB, WennemersH. Peptide-coated platinum nanoparticles with selective toxicity against liver cancer cells. Angew. Chem. Int. Ed. Engl.58(15), 4901–4905 (2019).
  • Pedone D , MoglianettiM, DeLuca E, BardiG, PompaPP. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev.46(16), 4951–4975 (2017).
  • Zeng X , SunJ, LiSet al. Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat. Commun.11(1), 567 (2020).
  • Szalay B , TatraiE, NyiroG, VezerT, DuraG. Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J. Appl. Toxicol.32(6), 446–453 (2012).
  • Wu W , HeQ, JiangC. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale. Res. Lett.3(11), 397–415 (2008).
  • Moacă E-A , CoricovacED, SoicaCM, PinzaruIA, PăcurariuCS, DeheleanCA. Preclinical aspects on magnetic iron oxide nanoparticles and their interventions as anticancer agents: enucleation, apoptosis and other mechanism. In: Iron Ores and Iron Oxide Materials.SharokhaV ( Ed.). IntechOpen, London, UK (2018).
  • NDong C , TateJA, KettWCet al. Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo. PLoS ONE10(2), e0115636 (2015).
  • Yang X , LiQ, MengX, LiD. Evolution of nonlinear optical characteristics of magnetic nanoparticle colloidal suspensions after laser-induced clusters. ACS Omega5(26), 15821–15827 (2020).
  • Canalle LA , LöwikDWPM, Janvan Hest JCM. Polypeptide–polymer bioconjugates (critical review). Chem. Soc. Rev.39, 329–353 (2010).
  • Lee JJ , SaifulYazan L, CheAbdullah CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int. J. Nanomedicine2017(12), 2373–2384 (2017).
  • Werengowska-Ciećwierz K , WiśniewskiM, TerzykA, FurmaniakS. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Condens. Matter Phys.2015, 198175 (2015).
  • Sperling RA , ParakWJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A. Math. Phys. Eng. Sci.368(1915), 1333–1383 (2010).
  • Fraire JC , CoronadoEA. Design of plasmonic probes through bioconjugation and their applications in biomedicine: from cellular imaging to cancer therapy. In: Nanobiomaterials in Medical Imaging.GrumezescuAM ( Ed.). William Andrew Publishing, NY, USA, 131–161 (2016).
  • Saboktakin M . Polyethylene glycol – Indocyanine green nanoparticles for photodynamic therapy technique. JSMC Nanotechnol. Nanomed.3, 6 (2019).
  • Jokerst JV , LobovkinaT, ZareRN, GambhirSS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.)6(4), 715–728 (2011).
  • Medina-Ramirez I , Gonzalez-GarciaM, PalakurthiJ, LiuS. Application of nanometals fabricated using green synthesis in cancer diagnosis and therapy. In: Green Chemistry. Environmentally Benign Approaches.MishraNK, KidwaiM ( Eds). IntechOpen, London, UK, 33–62 (2012).
  • Ingram RS , HostetlerMJ, MurrayRW. Poly-hetero-ö-functionalized alkanethiolate-stabilized gold cluster compounds. J. Am. Chem. Soc.119(39), 9175–9178 (1997).
  • Wilhelma C , BilloteyC, RogerJ, PonsJN, BacriJC, GazeauF. Gazeaua. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials24(6), 1001–1011 (2003).
  • Gao X , YangL, PetrosJA, MarshallFF, SimonsJW, NieS. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16(1), 63–72 (2005).
  • Vashist SK . Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics (Basel)2(3), 23–33 (2012).
  • Nobs L , BucheggerF, GurnyR, AllémannE. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci.93(8), 1980–1992 (2004).
  • Zimmermann JL , NicolausT, NeuertG, BlankK. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc.5(6), 975–985 (2010).
  • Spicer CD , PashuckET, StevensMM. Achieving controlled biomolecule-biomaterial conjugation. Chem. Rev.118(16), 7702–7743 (2018).
  • Alalaiwe A . The clinical pharmacokinetics impact of medical nanometals on drug delivery system. Nanomedicine17, 47–61 (2019).
  • Hurst SJ , Lytton-JeanAK, MirkinCA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem.78(24), 8313–8318 (2006).
  • Chen S , YangK, TuguntaevRGet al. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine12(2), 269–286 (2016).
  • Suk JS , XuQ, KimN, HanesJ, EnsignLM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug. Deliv. Rev.99(Pt A), 28–51 (2016).
  • Van Vlerken LE , VyasTK, AmijiMM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res.24(8), 1405–1414 (2007).
  • Gref R , MinamitakeY, PeracchiaMT, TrubetskoyV, TorchilinV, LangerR. Biodegradable long-circulating polymeric nanospheres. Science263(5153), 1600–1603 (1994).
  • Kanaras AG , KamounahFS, SchaumburgK, KielyCJ, BrustM. Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem. Commun. (Camb.)20, 2294–2295 (2002).
  • Mishra P , BismitaN, DeyRK. PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci.11(3), 337–348 (2015).
  • Shanmuganathan R , EdisonT, LewisoscarF, KumarP, ShanmugamS, PugazhendhiA. Chitosan nanopolymers: an overview of drug delivery against cancer. Int. J. Biol. Macromol.130, 727–736 (2019).
  • Li J , CaiC, LiJet al. Chitosan-based nanomaterials for drug delivery. Molecules23(10), 2661 (2018).
  • Ho DK , FrischS, BiehlAet al. Farnesylated glycol chitosan as a platform for drug delivery: synthesis, characterization, and investigation of mucus-particle interactions. Biomacromolecules19(8), 3489–3501 (2018).
  • Arias LS , PessanJP, VieiraAPM, LimaTMT, DelbemACB, MonteiroDR. Iron Oxide Nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel)7(2), 46 (2018).
  • Kim K , ChoiH, ChoiES, ParkMH, RyuJH. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics11(7), 301 (2019).
  • Sutradhar KB , AminML. Nanotechnology in cancer drug delivery and selective targeting. ISRN. Nanotechnology2014, 939378 (2014).
  • Lu C , ZhangC, WangPet al. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem.6(9), 2314–2334 (2020).
  • Song G , KenneyM, ChenYSet al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat. Biomed. Eng.4(3), 325–334 (2020).
  • Wang Y , ShiL, YeZet al. Reactive oxygen correlated chemiluminescent imaging of a semiconducting polymer nanoplatform for monitoring chemodynamic therapy. Nano. Lett.20(1), 176–183 (2020).
  • Song G , ChenM, ZhangYet al. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano. Lett.18(1), 182–189 (2018).
  • Song G , ZhengX, WangY, XiaX, ChuS, RaoJ. A magneto-optical nanoplatform for multimodality imaging of tumors in mice. ACS Nano.13(7), 7750–7758 (2019).
  • Liang Y , LiuJ, LiuT, YangX. Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol. Lett.14(2), 2254–2260 (2017).
  • Guo J , O’driscollCM, HolmesJD, RahmeK. Bioconjugated gold nanoparticles enhance cellular uptake: a proof of concept study for siRNA delivery in prostate cancer cells. Int. J. Pharm.509(1–2), 16–27 (2016).
  • Danesh NM , LavaeeP, RamezaniM, AbnousK, TaghdisiSM. Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles. Int. J. Pharm.489(1–2), 311–317 (2015).
  • Majidi FS , MohammadiE, MehraviB, NouriS, AshtariK, Neshasteh-RizA. Investigating the effect of near infrared photo thermal therapy folic acid conjugated gold nano shell on melanoma cancer cell line A375. Artif. Cells. Nanomed. Biotechnol.47(1), 2161–2170 (2019).
  • Abdalla MS , SharadaHM, MostafaKAet al. Therapeutic effect of antimyeloma antibodies conjugated with gold nanoparticles on the growth of myeloma cell line. Int. Multidiscip. Res. J.2(6), 64–70 (2012).
  • Liu T , TianJ, ChenZet al. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology25(34), 345103 (2014).
  • Sun X , ZhangG, PatelD, StephensD, GobinAM. Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor. Ann. Biomed. Eng.40(10), 2131–2139 (2012).
  • Centi S , TatiniF, RattoFet al. In vitro assessment of antibody-conjugated gold nanorods for systemic injections. J. Nanobiotechnol.12, 55 (2014).
  • Casanas Pimentel RG , RoblesBotero V, SanMartin Martinez E, GomezGarcia C, HinestrozaJP. Soybean agglutinin-conjugated silver nanoparticles nanocarriers in the treatment of breast cancer cells. J. Biomater. Sci. Polym. Ed.27(3), 218–234 (2016).
  • Raja G , JangYK, SuhJS, KimHS, AhnSH, KimTJ. Microcellular environmental regulation of silver nanoparticles in cancer therapy: a critical review. Cancers (Basel)12(3), 664 (2020).
  • Kaluzova M , BourasA, MachaidzeR, HadjipanayisCG. Targeted therapy of glioblastoma stem-like cells and tumor nonstem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget6(11), 8788–8806 (2015).
  • Wang AZ , BagalkotV, VasilliouCCet al. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem3(9), 1311–1315 (2008).
  • Yu MK , ParkJ, JeongYY, MoonWK, JonS. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery. Nanotechnology21(41), 415102 (2010).
  • Jalalian SH , TaghdisiSM, ShahidiHamedani Net al. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur. J. Pharm. Sci.50(2), 191–197 (2013).
  • Varshosaz J , HassanzadehF, AliabadiHS, KhoraskaniFR, MirianM, BehdadfarB. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int. J. Biol. Macromol.93(Pt A), 1192–1205 (2016).
  • Dilnawaz F , SinghA, MohantyC, SahooSK. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials31(13), 3694–3706 (2010).
  • Santra S , KaittanisC, GrimmJ, PerezJM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small5(16), 1862–1868 (2009).
  • Das M , MishraD, DhakPet al. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small5(24), 2883–2893 (2009).
  • Hadjipanayis CG , MachaidzeR, KaluzovaMet al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res.70(15), 6303–6312 (2010).
  • Sonvico F , MornetS, VasseurSet al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug. Chem.16(5), 1181–1188 (2005).
  • Reddy GR , BhojaniMS, McconvillePet al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer. Res.12(22), 6677–6686 (2006).
  • Yu MK , KimD, LeeIH, SoJS, JeongYY, JonS. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small7(15), 2241–2249 (2011).
  • Lin J , LiY, LiYet al. Drug/dye-loaded, multifunctional PEG-chitosan-iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS. Appl. Mater. Interfaces7(22), 11908–11920 (2015).
  • Yang X , HongH, GrailerJJet al. cRGD-functionalized, DOX-conjugated, and (6)(4)Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials32(17), 4151–4160 (2011).
  • Gmeiner WH , GhoshS. Nanotechnology for cancer treatment. Nanotechnol. Rev.3(2), 111–122 (2015).
  • Navya PN , KaphleA, SrinivasSP, BhargavaSK, RotelloVM, DaimaHK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano. Converg.6(1), 23 (2019).
  • Attia MF , AntonN, WallynJ, OmranZ, VandammeTF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol.71(8), 1185–1198 (2019).
  • Riley MK , VermerrisW. Recent advances in nanomaterials for gene delivery-A review. Nanomaterials (Basel)7(5), 94 (2017).
  • Anis HA . Gene therapy in the era of nanotechnology/a review of current data. J. Cancer. Prev. Curr. Res.10(1), 1–2 (2019).
  • Son S , NamJ, KimJ, KimS, KimWJ. i-motif-driven Au nanomachines in programmed siRNA delivery for gene-silencing and photothermal ablation. ACS. Nano8(6), 5574–5584 (2014).
  • Estelrich J , BusquetsMA. Iron oxide nanoparticles in photothermal therapy. Molecules23(7), 1567 (2018).
  • Melamed JR , EdelsteinRS, DayES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS. Nano9(1), 6–11 (2015).
  • Delaney GP , BartonMB. Evidence-based estimates of the demand for radiotherapy. Clin. Oncol. (R. Coll. Radiol.)27(2), 70–76 (2015).
  • Haume K , RosaS, GrelletSet al. Gold nanoparticles for cancer radiotherapy: a review. Cancer. Nanotechnol.7(1), 8 (2016).
  • Chen HHW , KuoMT. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget8(37), 62742–62758 (2017).
  • Libutti SK , PaciottiGF, ByrnesAAet al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res.16(24), 6139–6149 (2010).
  • Yurkiewicz IR , MufflyL, LiedtkeM. Inotuzumab ozogamicin: a CD22 mAb-drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug. Des. Devel. Ther.12, 2293–2300 (2018).
  • Norsworthy KJ , KoCW, LeeJEet al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist23(9), 1103–1108 (2018).
  • Thiesen B , JordanA. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia24(6), 467–474 (2008).
  • Maier-Hauff K , UlrichF, NestlerDet al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol.103(2), 317–324 (2011).
  • Marill J , AnesaryNM, ZhangPet al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat. Oncol. 9, 150 (2014).
  • Pottier A , BorghiE, LevyL. New use of metals as nanosized radioenhancers. Anticancer Res.34(1), 443–453 (2014).
  • Bobo D , RobinsonKJ, IslamJ, ThurechtKJ, CorrieSR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res.33(10), 2373–2387 (2016).
  • Rijal G , LiW. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J. Biol. Eng.12, 20 (2018).
  • Conde J , DoriaG, BaptistaP. Noble metal nanoparticles applications in cancer. J. Drug. Deliv.2012, 751075 (2012).
  • Ventola CL . Progress in nanomedicine: approved and investigational nanodrugs. P&T42(12), 742–755 (2017).
  • Havel H , FinchG, StrodePet al. Nanomedicines: from bench to bedside and beyond. AAPS J.18(6), 1373–1378 (2016).
  • Wadhawan A , ChatterjeeM, SinghG. Present scenario of bioconjugates in cancer therapy: a review. Int. J. Mol. Sci.20(21), (2019).
  • Karlsson HL , ToprakMS, FadeelB. Toxicity of metal and metal oxide nanoparticles. In: Handbook on the Toxicology of Metals (4th Edition).NordbergGF, FowlerBA, NordbergM ( Eds). Academic Press, CA, USA, 75–112 (2015).
  • Hossen S , HossainMK, BasherMK, MiaMNH, RahmanMT, UddinMJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J. Adv. Res.15, 1–18 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.