183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photodynamic Therapy-Mediated Extirpation of Cutaneous-Resistant Dermatophytosis with Ag@Zno Nanoparticles: An Efficient Therapeutic Approach for Onychomycosis

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 219-236 | Received 07 Apr 2021, Accepted 03 Dec 2021, Published online: 04 Feb 2022

References

  • Sigurgeirsson B, Baran R. The prevalence of onychomycosis in the global population – a literature study. J. Eur. Acad. Dermatol. Venereol. 28(11), 1480–1491 (2014).
  • Gupta AK, Konnikov N, MacDonald P et al. Prevalence and epidemiology of toenail onychomycosis in diabetic subjects: a multicentre survey. Br. J. Dermatol. 139(4), 665–671 (1998).
  • Vender RB, Lynde CW, Poulin Y. Prevalence and epidemiology of onychomycosis. J. Cutan. Med. Surg. 10(Suppl. 6), S28–S33 (2006).
  • Scher RK, Baran R. Onychomycosis in clinical practice: factors contributing to recurrence. Br. J. Dermatol. 149, 5–9 (2003).
  • Piraccini B, Alessandrini A. Onychomycosis: a review. J. Fungi 1(1), 30–43 (2015).
  • Thomas J, Jacobson GA, Narkowicz CK et al. Toenail onychomycosis: an important global disease burden. J. Clin. Pharm. Ther. 35(5), 497–519 (2010).
  • Faergemann J, Baran R. Epidemiology, clinical presentation and diagnosis of onychomycosis. Br. J. Dermatol. 149, 1–4 (2003).
  • Baran R, Kaoukhov A. Topical antifungal drugs for the treatment of onychomycosis: an overview of current strategies for monotherapy and combination therapy. J. Eur. Acad. Dermatol. Venereol. 19(1), 21–29 (2005).
  • Scher RK. Onychomycosis: a significant medical disorder. J. Am. Acad. Dermatol. 35(3), S2–S5 (1996).
  • Piraccini BM, Sisti A, Tosti A. Long-term follow-up of toenail onychomycosis caused by dermatophytes after successful treatment with systemic antifungal agents. J. Am. Acad. Dermatol. 62(3), 411–414 (2010).
  • Gupta AK, Ryder JE, Johnson AM. Cumulative meta-analysis of systemic antifungal agents for the treatment of onychomycosis. Br. J. Dermatol. 150(3), 537–544 (2004).
  • Hajipour MJ, Fromm KM, Ashkarran AA et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 30(10), 499–511 (2012).
  • Zhang L, Pornpattananangkul D, Hu CM et al. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17(6), 585–594 (2010).
  • Kim JS, Kuk E, Yu KN et al. Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnol. Biol. Med. 3(1), 95–101 (2007).
  • He L, Liu Y, Mustapha A et al. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166(3), 207–215 (2011).
  • Rai MK, Deshmukh SD, Ingle AP et al. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112(5), 841–852 (2012).
  • Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chemie. Int. Ed. 52(6), 1636–1653 (2013).
  • Rogers JV, Parkinson CV, Choi YW et al. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 3(4), 129 (2008).
  • Elechiguerra JL, Burt JL, Morones JR et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3(1), 6 (2005).
  • Jo Y-K, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10), 1037–1043 (2009).
  • Sharma P, Sharma A, Sharma M et al. Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Challenges 1(9), 1700041 (2017).
  • Panáček A, Kolář M, Večeřová R et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31), 6333–6340 (2009).
  • Kim KJ, Sung WS, Moon SK et al. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 18(8), 1482–1484 (2008).
  • Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B Biol. 128, 78–84 (2013).
  • Baltazar L de M, Soares BM, Carneiro HCS et al. Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J. Antimicrob. Chemother. 68(2), 354–361 (2012).
  • Calzavara-Pinton P, Rossi MT, Sala R et al. Photodynamic antifungal chemotherapy. Photochem. Photobiol. 88(3), 512–522 (2012).
  • Vatansever F, de Melo WCMA, Avci P et al. Antimicrobial strategies centered around reactive oxygen species–bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37(6), 955–989 (2013).
  • Baltazar LM, Krausz AE, Souza ACO et al. Trichophyton rubrum is inhibited by free and nanoparticle encapsulated curcumin by induction of nitrosative stress after photodynamic activation. PLoS ONE 10(3), e0120179 (2015).
  • Ghaemi B, Shaabani E, Najafi-Taher R et al. Intracellular ROS induction by Ag@ ZnO core–shell nanoparticles: frontiers of permanent optically active holes in breast cancer theranostic. ACS Appl. Mater. Interfaces 10(29), 24370–24381 (2018).
  • Ghaemi B, Kharrazi S, Amani A et al. Process-dependent photocatalytic performance of quantum sized ZnO nanoparticles. Mater. Res. Express 5(11), 115027 (2018).
  • Facchinatto WM, Galante J, Mesquita L et al. Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater. 125, 312–321 (2021).
  • Shankland GS, Richardson MD. Comparative in vivo activity of clotrimazole and a clotrimazole/hydrocortisone combination in the treatment of experimental dennatophytosis in guinea pigs. J. Antimicrob. Chemother. 25(5), 825–830 (1990).
  • Ghaemi B, Moshiri A, Herrmann IK et al. Supramolecular insights into domino effects of Ag@ ZnO-induced oxidative stress in melanoma cancer cells. ACS Appl. Mater. Interfaces 11(50), 46408–46418 (2019).
  • Cronholm P, Karlsson HL, Hedberg J et al. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9(7), 970–982 (2013).
  • Villamizar-Gallardo R, Cruz JFO, Ortíz-Rodriguez OO. Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesqui. Agropecuária Bras. 51(12), 1929–1936 (2016).
  • Watkins PB. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol. Clin. North Am. 21(3), 511–526 (1992).
  • Azhdarzadeh M, Saei AA, Sharifi S et al. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine 10(18), 2931–2952 (2015).
  • Raoufi M, Hajipour MJ, Shahri SMK et al. Probing fibronectin conformation on a protein corona layer around nanoparticles. Nanoscale 10(3), 1228–1233 (2018).
  • Shanehsazzadeh S, Lahooti A, Hajipour MJ et al. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids Surfaces B Biointerfaces 136, 1107–1112 (2015).
  • Ghaemi B, Mashinchian O, Mousavi T et al. Harnessing the cancer radiation therapy by lanthanide-doped zinc oxide based theranostic nanoparticles. ACS Appl. Mater. Interfaces 8(5), 3123–3134 (2016).
  • Peng M, Chen C, Hulbert A et al. Non-blood circulating tumor DNA detection in cancer. Oncotarget 8(40), 69162–69173 (2017).
  • Das B, Khan MI, Jayabalan R et al. Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei. Sci. Rep. 6(1), 1–12 (2016).
  • Kadhim A, Haleem AM, Abbas RH. Copper Oxide NPs: synthesis and their anti-dermatophyte activity against Trichophyton rubrum. Eng. Technol. J. 35(3), 276–281 (2017).
  • Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem. Rev. 114(2), 1258–1288 (2013).
  • Tawfik AA, Noaman I, El-Elsayyad H et al. A study of the treatment of cutaneous fungal infection in animal model using photoactivated composite of methylene blue and gold nanoparticle. Photodiagnosis Photodyn. Ther. 15, 59–69 (2016).
  • Ouf SA, El-Adly AA, Mohamed AAH. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J. Med. Microbiol. 64(10), 1151–1161 (2015).
  • Xia ZK, Ma QH, Li SY et al. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect. 49(2), 182–188 (2016).
  • Shaikh AA, Syed NS, Rafique M et al. Morphometric study of ketoconazole treated liver in albino rats. Pak. J. Pharm. 27, 11–17 (2010).
  • Sharma P, Bhalla M, Thami GP et al. Evaluation of efficacy and safety of oral terbinafine and itraconazole combination therapy in the management of dermatophytosis. J. Dermatolog. Treat. 31(7), 749–753 (2020).
  • Ghannoum MA, Long L, Kim HG et al. Efficacy of terbinafine compared to lanoconazole and luliconazole in the topical treatment of dermatophytosis in a guinea pig model. Med. Mycol. 48(3), 491–497 (2010).
  • Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia 166(5–6), 369 (2008).
  • Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 9(7), 1029–1050 (2009).
  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40(3), 1647–1671 (2011).
  • Aggarwal P, Hall JB, McLeland CB et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009).
  • Huang X, Wu C, Fu Y et al. Methylation analysis for multiple gene promoters in non-small cell lung cancers in high indoor air pollution region in China. Bull. Cancer 105(9), 746–754 (2018).
  • Li C-H, Shen C-C, Cheng Y-W et al. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6(7), 746–756 (2012).
  • Gupta R, Rai B. Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci. Rep. 7, 45292 (2017).
  • Filon FL, Mauro M, Adami G et al. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 72(2), 310–322 (2015).
  • Ibrahim K, Al-Mutary M, Bakhiet A et al. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules 23(8), 1848 (2018).
  • Xu Q, Zheng Z, Wang B et al. Zinc ion coordinated poly(ionic liquid) antimicrobial membranes for wound healing. ACS Appl. Mater. Interfaces 9(17), 14656–14664 (2017).
  • Rajendran NK, Kumar SSD, Houreld NN et al. A review on nanoparticle based treatment for wound healing. J. Drug Deliv. Sci. Technol. 44, 421–430 (2018).
  • Sudheesh Kumar PT, Lakshmanan V-K, Anilkumar TV et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 4(5), 2618–2629 (2012).
  • Han G, Nguyen LN, Macherla C et al. Nitric oxide–releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am. J. Pathol. 180(4), 1465–1473 (2012).
  • Hamdan S, Pastar I, Drakulich S et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent. Sci. 3(3), 163–175 (2017).
  • Wang M, Marepally SK, Vemula PK et al. Inorganic nanoparticles for transdermal drug delivery and topical application. In: Nanoscience in Dermatology. Hamblin MR, Avci P, Prow TW ( Eds). Academic Press, MA, USA, 57–72 (2016).
  • Hersi A-F, Eriksson S, Ramos J et al. A combined, totally magnetic technique with a magnetic marker for non-palpable tumour localization and superparamagnetic iron oxide nanoparticles for sentinel lymph node detection in breast cancer surgery. Eur. J. Surg. Oncol. 45(4), 544–549 (2019).
  • Li C, Wei H, Zhao Y et al. Laser-assisted permeation of titanium dioxide nanoparticles in ex vivo human endometrium tissues monitored by OCT and diffuse reflectance spectra. IEEE J. Sel. Top. Quantum Electron 25(2), 1–9 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.