144
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanogold-Based Materials in Medicine: From Their Origins to Their Future

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2695-2723 | Received 16 Jul 2021, Accepted 05 Nov 2021, Published online: 09 Dec 2021

References

  • Rudolf R , AnželM, MarkovićE, ČolićM, StamenkovićD. Gold in the past, today and future. Metalurgija51(2), 261–264 (2012).
  • Yang X , YangM, PangB, VaraM, XiaY. Gold nanomaterials at work in biomedicine. Chem. Rev.115(19), 10410–10488 (2015).
  • Murphy CJ , GoleAM, StoneJWet al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res.41(12), 1721–1730 (2008).
  • Yannopoulos JC . Physical and chemical properties of gold. In: The Extractive Metallurgy of Gold.Springer, MA, USA, 11–23 (1991).
  • Goodman P . Current and future uses of gold in electronics. Gold Bull.35(1), 21–26 (2002).
  • Savage N . Resources: mine, all mine!Nature495(7440), S2–S3 (2013).
  • Habashi F . Gold – an historical introduction. In: Gold Ore Processing (2nd Edition).AdamsMD ( Ed.). Elsevier Science, Amsterdam, The Netherlands, 1–20 (2016).
  • GoldHUB . Gold supply and demand statistics (2021). www.gold.org/goldhub/data/gold-supply-and-demand-statistics
  • Corti CW , HollidayRJ. Commercial aspects of gold applications: from materials science to chemical science. Gold Bull.37(1–2), 20–26 (2004).
  • Faraday M . The Bakerian Lecture. Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc.147, 145–181 (1857).
  • Dreaden EC , AlkilanyAM, HuangX, MurphyCJ, El-SayedMA. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev.41(7), 2740–2779 (2012).
  • Jeevanandam J , BarhoumA, ChanYS, DufresneA, DanquahMK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol.9(1), 1050–1074 (2018).
  • Arai Y , JeeSY, KimSM, KwonY, JangW. Biomedical applications and safety issues of gold nanoparticles. Toxicol. Environ. Health Sci.4(1), 1–8 (2012).
  • Sztandera K , GorzkiewiczM, Klajnert-MaculewiczB. Gold nanoparticles in cancer treatment. Mol. Pharm.16(1), 1–23 (2019).
  • Venditti I . Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. a mini review. Bioengineering6(2), 53 (2019).
  • Jiang XM , WangLM, WangJ, ChenCY. Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Appl. Biochem. Biotechnol.166(6), 1533–1551 (2012).
  • Bai X , WangY, SongZet al. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci.21(7), 2480 (2020).
  • Amendola V , PilotR, FrasconiM, MaragòOM, IatìMA. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter29(20), 203002 (2017).
  • Huang X , El-SayedMA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res.1(1), 13–28 (2010).
  • Kennedy LC , BickfordLR, LewinskiNAet al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small7(2), 169–183 (2011).
  • Riley RS , DayES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.9(4), e1449 (2017).
  • Abadeer NS , MurphyCJ. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C120(9), 4691–4716 (2016).
  • Sengani M , GrumezescuAM, RajeswariVD. Recent trends and methodologies in gold nanoparticle synthesis – a prospective review on drug delivery aspect. OpenNano2, 37–46 (2017).
  • Li C , IqbalM, LinJet al. Electrochemical deposition: an advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res.51(8), 1764–1773 (2018).
  • Mohanty US . Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J. Appl. Electrochem.41(3), 257–270 (2011).
  • Paramasivam G , KayambuN, RabelAM, SundramoorthyAK, SundaramurthyA. Anisotropic noble metal nanoparticles: synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater.49, 45–65 (2017).
  • Bera D , KuirySC, SealS. Synthesis of nanostructured materials using template-assisted electrodeposition. JOM56(1), 49–53 (2004).
  • van der Zande BMI , BöhmerMR, FokkinkLGJ, SchönenbergerC. Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir16(2), 451–458 (2000).
  • Yan Y , PadmanabhaPillai P, TimonenJVI, EmamiFS, VahidA, GrzybowskiBA. Synthesis of toroidal gold nanoparticles assisted by soft templates. Langmuir30(33), 9886–9890 (2014).
  • Nguyen PD , ZhangX, SuJ. One-step controlled synthesis of size-tunable toroidal gold particles for biochemical sensing. ACS Appl. Nano Mater.2(12), 7839–7847 (2019).
  • Huang C-J , ChiuP-H, WangY-H, YangC-F. Synthesis of the gold nanodumbbells by electrochemical method. J. Colloid Interface Sci.303(2), 430–436 (2006).
  • Martin BR , DermodyDJ, ReissBDet al. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv. Mater.11(12), 1021–1025 (1999).
  • Huo Z , TsungC, HuangW, ZhangX, YangP. Sub-two nanometer single crystal Au nanowires. Nano Lett.8(7), 2041–2044 (2008).
  • Esumi K , MatsuhisaK, TorigoeK. Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir11(9), 3285–3287 (1995).
  • Yu Y-Y , ChangS-S, LeeC-L, WangCRC. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B101(34), 6661–6664 (1997).
  • Ma H , YinB, WangSet al. Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem5(1), 68–75 (2004).
  • Gao C , ZhangQ, LuZ, YinY. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc.133(49), 19706–19709 (2011).
  • Skrabalak SE , ChenJ, SunYet al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res.41(12), 1587–1595 (2008).
  • Li Z , LiW, CamargoPHC, XiaY. Facile synthesis of branched Au nanostructures by templating against a self-destructive lattice of magnetic Fe nanoparticles. Angew. Chem. Int. Ed.47(50), 9653–9656 (2008).
  • De Souza CD , RibeiroNogueira B, RostelatoMECM. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd.798, 714–740 (2019).
  • Freitas de Freitas L , VarcaGHC, DosSantos Batista JG, BenévoloLugão A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials(Basel)8(11), 939 (2018).
  • Turkevich J , StevensonPC, HillierJ. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.11(0), 55–75 (1951).
  • Frens G . Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241(105), 20–22 (1973).
  • Brust M , WalkerM, BethellD, SchiffrinDJ, WhymanR. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. (7), 801–802 (1994).
  • Slepička P , KasálkováNS, SiegelJ, KolskáZ, ŠvorčíkV. Methods of gold and silver nanoparticles preparation. Materials (Basel)13(1), 1 (2020).
  • Xu H , XuJ, JiangXet al. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution. Chem. Mater.19(10), 2489–2494 (2007).
  • Capek I . Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci.110(1–2), 49–74 (2004).
  • Salabat A , MirhoseiniF. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq.268, 849–853 (2018).
  • Jana NR , GearheartL, MurphyCJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir17(22), 6782–6786 (2001).
  • Alkilany AM , NagariaPK, HexelCR, ShawTJ, MurphyCJ, WyattMD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small5(6), 701–708 (2009).
  • Iravani S . Green synthesis of metal nanoparticles using plants. Green Chem.13(10), 2638–2650 (2011).
  • Shankar SS , RaiA, AhmadA, SastryM. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci.275(2), 496–502 (2004).
  • Kowalczyk B , LagziI, GrzybowskiBA. Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr. Opin. Colloid Interface Sci.16(2), 135–148 (2011).
  • Sujitha MV , KannanS. Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.102, 15–23 (2013).
  • Sharma NC , SahiSV, NathS, ParsonsJG, Gardea-TorresdeyJL, PalT. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ. Sci. Technol.41(14), 5137–5142 (2007).
  • Ramezani N , EhsanfarZ, ShamsaFet al. Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Zeitschrift fur Naturforsch. B63(7), 903–908 (2008).
  • MubarakAli D , ThajuddinN, JeganathanK, GunasekaranM. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B Biointerfaces85(2), 360–365 (2011).
  • Silva CO , RijoC, MolpeceresJet al. Bioproduction of gold nanoparticles for photothermal therapy. Ther. Deliv.7(5), 287–304 (2016).
  • Silva CO , PetersenSB, ReisCPet al. EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization for photothermal therapy. PLoS ONE11(10), e0165419 (2016).
  • Lopes J , CoelhoJM, VieiraPM, VianaAS, GasparMM, ReisC. Preliminary assays towards melanoma cells using phototherapy with gold-based nanomaterials. Nanomaterials10(8), 1536 (2020).
  • Shankar SS , RaiA, AhmadA, SastryM. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater.17(3), 566–572 (2005).
  • Shankar SS , RaiA, AnkamwarB, SinghA, AhmadA, SastryM. Biological synthesis of triangular gold nanoprisms. Nat. Mater.3(7), 482–488 (2004).
  • Smitha SL , PhilipD, GopchandranKG. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A Mol. Biomol. Spectrosc.74(3), 735–739 (2009).
  • Kasthuri J , VeerapandianS, RajendiranN. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B Biointerfaces68(1), 55–60 (2009).
  • Philip D , UnniC, AromalSA, VidhuVK. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc.78(2), 899–904 (2011).
  • Narayanan KB , SakthivelN. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett.62(30), 4588–4590 (2008).
  • Shankar SS , AhmadA, PasrichaR, SastryM. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem.13(7), 1822–1826 (2003).
  • Armendariz V , HerreraI, Peralta-VideaJRet al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanopart. Res.6(4), 377–382 (2004).
  • Ankamwar B , ChaudharyM, SastryM. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met. Nano-Metal Chem.35(1), 19–26 (2005).
  • Ghodake GS , DeshpandeNG, LeeYP, JinES. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf. B Biointerfaces75(2), 584–589 (2010).
  • Philip D , UnniC. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E43(7), 1318–1322 (2011).
  • Gardea-Torresdey JL , TiemannKJ, GamezG, DokkenK, TehuacaneroS, José-YacamánM. Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J. Nanopart. Res.1(3), 397–404 (1999).
  • Gardea-Torresdey JL , ParsonsJG, GomezEet al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett.2(4), 397–401 (2002).
  • Huang H , YangX. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules5(6), 2340–2346 (2004).
  • Qi ZM , ZhouHS, MatsudaNet al. Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution. J. Phys. Chem. B108(22), 7006–7011 (2004).
  • Sen IK , MaityK, IslamSS. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr. Polym.91(2), 518–528 (2013).
  • Mukherjee P , AhmadA, MandalDet al. Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed.40(19), 3585–3588 (2001).
  • Dhanasekar NN , RahulGR, NarayananKB, RamanG, SakthivelN. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J. Microbiol. Biotechnol.25(7), 1129–1135 (2015).
  • Singaravelu G , ArockiamaryJS, KumarVG, GovindarajuK. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces57(1), 97–101 (2007).
  • Liu B , XieJ, LeeJY, TingYP, ChenJP. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B109(32), 15256–15263 (2005).
  • Xie J , LeeJY, WangDIC, TingYP. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small3(4), 672–682 (2007).
  • Brown S , SarikayaM, JohnsonE. A genetic analysis of crystal growth. J. Mol. Biol.299(3), 725–735 (2000).
  • Nair B , PradeepT. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des.2(4), 293–298 (2002).
  • Kalishwaralal K , DeepakV, PandianSRK, GurunathanS. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour. Technol.100(21), 5356–5358 (2009).
  • Reddy AS , ChenC-Y, ChenC-Cet al. Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol.10(10), 6567–6574 (2010).
  • Baker S , SatishS. Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim. Acta A Mol. Biomol. Spectrosc.150, 691–695 (2015).
  • Zheng B , QianL, YuanHet al. Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta82(1), 177–183 (2010).
  • Zhou K , ZhangJ, WangQ. Site-selective nucleation and controlled growth of gold nanostructures in tobacco mosaic virus nanotubulars. Small11(21), 2505–2509 (2015).
  • Costa E , Ferreira-GonçalvesT, CardosoMet al. A step forward in breast cancer research: from a natural-like experimental model to a preliminary photothermal approach. Int. J. Mol. Sci.21(24), 1–28 (2020).
  • Amaral M , CharmierAJ, AfonsoRAet al. Gold-based nanoplatform for the treatment of anaplastic thyroid carcinoma: a step forward. Cancers (Basel)13(6), 1–24 (2021).
  • Ngo VKT , NguyenDG, HuynhTP, LamQV. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia coli O157:H7 bacteria. Adv. Nat. Sci. Nanosci. Nanotechnol.7(3), 035016 (2016).
  • Seol SK , KimD, JungS, HwuY. Microwave synthesis of gold nanoparticles: effect of applied microwave power and solution pH. Mater. Chem. Phys.131(1–2), 331–335 (2011).
  • Kundu S , PengL, LiangH. A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorg. Chem.47(14), 6344–6352 (2008).
  • Yasmin A , RameshK, RajeshkumarS. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Converg.1(12), 1–7 (2014).
  • Lee J , ChoiSUS, JangSP, LeeSY. Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath. Nanoscale Res. Lett.7(1), 420 (2012).
  • Shen Q , MinQ, ShiJ, JiangL, HouW, ZhuJJ. Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method. Ultrason. Sonochem.18(1), 231–237 (2011).
  • Liu YC , LinLH, ChiuWH. Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods. J. Phys. Chem. B108(50), 19237–19240 (2004).
  • Okitsu K , AshokkumarM, GrieserF. Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J. Phys. Chem. B109(44), 20673–20675 (2005).
  • Mafuné F , KohnoJY, TakedaY, KondowT, SawabeH. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B105(22), 5114–5120 (2001).
  • Amendola V , PolizziS, MeneghettiM. Laser ablation synthesis of gold nanoparticles in organic solvents. J. Phys. Chem. B110(14), 7232–7237 (2006).
  • Naharuddin NZA , SadrolhosseiniAR, BakarMHA, TamchekN, MahdiMA. Laser ablation synthesis of gold nanoparticles in tetrahydrofuran. Opt. Mater. Express10(2), 323–331 (2020).
  • Wender H , AndreazzaML, CorreiaRRB, TeixeiraSR, DupontJ. Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale3(3), 1240–1245 (2011).
  • Karakoti AS , DasS, ThevuthasanS, SealS. PEGylated inorganic nanoparticles. Angew. Chem. Int. Ed.50(9), 1980–1994 (2011).
  • Niidome T , YamagataM, OkamotoYet al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release114(3), 343–347 (2006).
  • Qiu Y , LiuY, WangLet al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials31(30), 7606–7619 (2010).
  • Owens DE , PeppasNA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1), 93–102 (2006).
  • Piao J-G , WangL, GaoF, YouY-Z, XiongY, YangL. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano8(10), 10414–10425 (2014).
  • Chen Y , XianyuY, JiangX. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res.50(2), 310–319 (2017).
  • Porcaro F , BattocchioC, AntocciaAet al. Synthesis of functionalized gold nanoparticles capped with 3-mercapto-1-propansulfonate and 1-thioglucose mixed thiols and ‘in vitro’ bioresponse. Colloids Surf. B Biointerfaces142, 408–416 (2016).
  • Maeda H , NakamuraH, FangJ. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev.65(1), 71–79 (2013).
  • Fang J , NakamuraH, MaedaH. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev.63(3), 136–151 (2011).
  • Mosquera J , Henriksen-LaceyM, GarcíaIet al. Cellular uptake of gold nanoparticles triggered by host–guest interactions. J. Am. Chem. Soc.140(13), 4469–4472 (2018).
  • Zhang G , YangZ, LuWet al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials30(10), 1928–1936 (2009).
  • Lin S-Y , TsaiY-T, ChenC-C, LinC-M, ChenC. Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J. Phys. Chem. B108(7), 2134–2139 (2004).
  • Simard J , BriggsC, BoalAK, RotelloVM. Formation and pH-controlled assembly of amphiphilic gold nanoparticles. Chem. Commun. (19), 1943–1944 (2000).
  • Fratoddi I , BenassiL, BottiEet al. Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model. Nanomedicine17, 276–286 (2019).
  • Xu B , JuY, CuiYet al. TLyP-1-conjugated Au-nanorod@SiO2 core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy. Langmuir30(26), 7789–7797 (2014).
  • Li G , LiD, ZhangL, ZhaiJ, WangE. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry15(38), 9868–9873 (2009).
  • Yücel O , ŞengelenA, EmikS, Önay-UçarE, ArdaN, GürdağG. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. Nanotechnology31(35), 355101 (2020).
  • Tsai S-W , LiawJ-W, HsuF-Y, ChenY-Y, LyuM-J, YehM-H. Surface-modified gold nanoparticles with folic acid as optical probes for cellular imaging. Sensors8(10), 6660–6673 (2008).
  • Beik J , JafariyanM, MontazerabadiAet al. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artif. Cells Nanomed. Biotechnol.46(8), 1993–2001 (2018).
  • Choi CHJ , AlabiCA, WebsterP, DavisME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl Acad. Sci. USA107(3), 1235–1240 (2010).
  • Yang PH , SunX, ChiuJF, SunH, HeQY. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug. Chem.16(3), 494–496 (2005).
  • Wang W , LiD, ZhangYet al. One-pot synthesis of hyaluronic acid-coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity. Microchim. Acta187(11), 604 (2020).
  • Apaolaza PS , BuschM, Asin-PrietoEet al. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: evaluation of the surface properties and effect on their distribution. Exp. Eye Res.198, 108151 (2020).
  • Xu X , ChongY, LiuXet al. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomater.84, 328–338 (2019).
  • de la Presa P , MultignerM, dela Venta J, GarcíaMA, Ruiz-GonzálezML. Structural and magnetic characterization of oleic acid and oleylamine-capped gold nanoparticles. J. Appl. Phys.100, 123915 (2006).
  • Si S , DindaE, MandalTK. In situ synthesis of gold and silver nanoparticles by using redox-active amphiphiles and their phase transfer to organic solvents. Chemistry13(35), 9850–9861 (2007).
  • Lopes J , Ferreira-GonçalvesT, FigueiredoIVet al. Proof-of-concept study of multifunctional hybrid nanoparticle system combined with NIR laser irradiation for the treatment of melanoma. Biomolecules11(4), 511 (2021).
  • Venditti I , IucciG, FratoddiIet al. Direct conjugation of resveratrol on hydrophilic gold nanoparticles: structural and cytotoxic studies for biomedical applications. Nanomaterials10(10), 1898 (2020).
  • Fratoddi I , VendittiI, BattocchioCet al. Highly hydrophilic gold nanoparticles as carrier for anticancer copper (I) complexes: loading and release studies for biomedical applications. Nanomaterials9(5), 772 (2019).
  • Zhou X , ChenF, LuHet al. Ionic microgel loaded with gold nanoparticles for the synergistic dual-drug delivery of doxorubicin and diclofenac sodium. Ind. Eng. Chem. Res.58(25), 10922–10930 (2019).
  • Nam J , LaW, HwangSet al. pH-responsive assembly of gold nanoparticles and ‘spatiotemporally concerted’ synergistic cancer therapy. ACS Nano7(4), 3388–3402 (2013).
  • De Matteis V , CascioneM, RizzelloL, MannoDE, DiGuglielmo C, RinaldiR. Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: macrophage inflammatory response and cancer cell death assessment. Cancers (Basel)13(14), 3610 (2021).
  • Park S , LeeWJ, ParkS, ChoiD, KimS, ParkN. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy. Sci. Rep.9(1), 20180 (2019).
  • Alex S , TiwariA. Functionalized gold nanoparticles: synthesis, properties and applications – a review. J. Nanosci. Nanotechnol.15(3), 1869–1894 (2015).
  • Sonavane G , TomodaK, SanoA, OhshimaH, TeradaH, MakinoK. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf. B Biointerfaces65(1), 1–10 (2008).
  • Sun Y , MayersB, XiaY. Metal nanostructures with hollow interiors. Adv. Mater.15(7–8), 641–646 (2003).
  • Urries I , MuñozC, GomezLet al. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale6(15), 9230–9240 (2014).
  • Wang YC , RhéaumeÉ, LesageF, KakkarA. Synthetic methodologies to gold nanoshells: an overview. Molecules23(11), 2851 (2018).
  • An L , WangY, TianQ, YangS. Small gold nanorods: recent advances in synthesis, biological imaging, and cancer therapy. Materials (Basel)10(12), 1372 (2017).
  • Kumar R , BinettiL, NguyenTHet al. Determination of the aspect-ratio distribution of gold nanorods in a colloidal solution using UV-visible absorption spectroscopy. Sci. Rep.9(1), 17469 (2019).
  • Xiong Y , WashioI, ChenJ, CaiH, LiZ-Y, XiaY. Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir22(20), 8563–8570 (2006).
  • Zhang J , LangilleMR, PersonickML, ZhangK, LiS, MirkinCA. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc.132(40), 14012–14014 (2010).
  • Fabris L . Gold nanostars in biology and medicine: understanding physicochemical properties to broaden applicability. J. Phys. Chem. C124(49), 26540–26553 (2020).
  • Oldenburg SJ , AverittRD, WestcottSL, HalasNJ. Nanoengineering of optical resonances. Chem. Phys. Lett.288 (2–4), 243–247 (1998).
  • Hirsch LR , StaffordRJ, BanksonJAet al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA100(23), 13549–13554 (2003).
  • Rastinehad AR , AnastosH, WajswolEet al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl Acad. Sci. USA116(37), 18590–18596 (2019).
  • Shi W , SahooY, SwihartMT, PrasadPN. Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir21(4), 1610–1617 (2005).
  • O'Neal DP , HirschLR, HalasNJ, PayneJD, WestJL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett.209(2), 171–176 (2004).
  • Park H , YangJ, SeoSet al. Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small4(2), 192–196 (2008).
  • Sanchez-Gaytan BL , SwanglapP, LamkinTJet al. Spiky gold nanoshells: synthesis and enhanced scattering properties. J. Phys. Chem. C116(18), 10318–10324 (2012).
  • Nia ZL , NaderiM. Synthesis and characterization of hollow gold nanoparticles by recovery of gold from secondary resources. J. Iran. Chem. Soc.15(3), 537–546 (2018).
  • Xiong C , LuW, ZhouM, WenX, LiC. Cisplatin-loaded hollow gold nanoparticles for laser-triggered release. Cancer Nanotechnol.9(1), 6 (2018).
  • Dung NT , LinhNTN, ChiDLet al. Optical properties and stability of small hollow gold nanoparticles. RSC Adv.11(22), 13458–13465 (2021).
  • Guo M , HeJ, LiY, MaS, SunX. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J. Hazard. Mater.310, 89–97 (2016).
  • Graf C , van BlaaderenA. Metallodielectric colloidal core-shell particles for photonic applications. Langmuir18(2), 524–534 (2002).
  • Sun Y , XiaY. Multiple-walled nanotubes made of metals. Adv. Mater.16(3), 264–268 (2004).
  • Sun Y , WileyB, LiZY, XiaY. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc.126(30), 9399–9406 (2004).
  • Liu C , LiS, GuY, XiongH, Wong-takW, SunL. Multispectral photoacoustic imaging of tumor protease activity with a gold nanocage-based activatable probe. Mol. Imaging Biol.20(6), 919–929 (2018).
  • Chen J , YangM, ZhangQet al. Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv. Funct. Mater.20(21), 3684–3694 (2010).
  • Au L , ChenY, ZhouFet al. Synthesis and optical properties of cubic gold nanoframes. Nano Res.1(6), 441–449 (2008).
  • Wan D , XiaX, WangY, XiaY. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying. Small9(18), 3111–3117 (2013).
  • Bessar H , VendittiI, BenassiLet al. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf. B Biointerfaces141, 141–147 (2016).
  • Perrault SD , ChanWCW. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc.131(47), 17042–17043 (2009).
  • Miranda-Andrades JR , Pérez-GramatgesA, PandoliO, RomaniEC, AucélioRQ, da SilvaAR. Spherical gold nanoparticles and gold nanorods for the determination of gentamicin. Spectrochim. Acta A Mol. Biomol. Spectrosc.172, 126–134 (2017).
  • Rodríguez-Fernández J , Pérez-JusteJ, GarcíaDe Abajo FJ, Liz-MarzánLM. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir22(16), 7007–7010 (2006).
  • Zheng Y , ZhongX, LiZ, XiaY. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part. Part. Syst. Char.31(2), 266–273 (2014).
  • Nikoobakht B , El-SayedMA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.15(10), 1957–1962 (2003).
  • Ye X , JinL, CaglayanHet al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano6(3), 2804–2817 (2012).
  • Wu X , MingT, WangX, WangP, WangJ, ChenJ. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano4(1), 113–120 (2010).
  • Thiele M , SohJZE, KnauerAet al. Gold nanocubes – direct comparison of synthesis approaches reveals the need for a microfluidic synthesis setup for a high reproducibility. Chem. Eng. J.288, 432–440 (2016).
  • Park J-E , LeeY, NamJ-M. Precisely shaped, uniformly formed gold nanocubes with ultrahigh reproducibility in single-particle scattering and surface-enhanced Raman scattering. Nano Lett.18(10), 6475–6482 (2018).
  • Lee SY , HanY, HongJW, HaJW. Single gold bipyramids with sharp tips as sensitive single particle orientation sensors in biological studies. Nanoscale9(33), 12060–12067 (2017).
  • Xu Y , WangX, ChengL, LiuZ, ZhangQ. High-yield synthesis of gold bipyramids for in vivo CT imaging and photothermal cancer therapy with enhanced thermal stability. Chem. Eng. J.378, 122025 (2019).
  • Mahmoud AYF , RusinCJ, McDermottMT. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer. Analyst145(4), 1396–1407 (2020).
  • Duong HD , Vo-DinhT, RheeJIL. Synthesis and functionalization of gold nanostars for singlet oxygen production. J. Ind. Eng. Chem.69, 233–240 (2019).
  • Tian Y , ZhangY, TengZet al. pH-dependent transmembrane activity of peptide-functionalized gold nanostars for computed tomography/photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces9(3), 2114–2122 (2017).
  • Chang Y-X , ZhangN-N, XingY-Cet al. Gold nanotetrapods with unique topological structure and ultranarrow plasmonic band as multifunctional therapeutic agents. J. Phys. Chem. Lett.10(16), 4505–4510 (2019).
  • Pazos-Perez N , GuerriniL, Alvarez-PueblaRA. Plasmon tunability of gold nanostars at the tip apexes. ACS Omega3(12), 17173–17179 (2018).
  • Nie S . Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond.)5(4), 523–528 (2010).
  • Zahr AS , DavisCA, PishkoMVet al. Macrophage uptake of core–shell nanoparticles surface modified with poly(ethylene glycol). Langmuir22(14), 8178–8185 (2006).
  • Fröhlich E . The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine7, 5577–5591 (2012).
  • Lin J , ZhangH, ChenZ, ZhengY. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano4(9), 5421–5429 (2010).
  • Honary S , ZahirF. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 2). Trop. J. Pharm. Res.12(2), 265–273 (2013).
  • Moustaoui H , SaberJ, DjeddiIet al. Shape and size effect on photothermal heat elevation of gold nanoparticles: absorption coefficient experimental measurement of spherical and urchin-shaped gold nanoparticles. J. Phys. Chem. C123(28), 17548–17554 (2019).
  • Yeshchenko OA , KutsevolNV, NaumenkoAP. Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics11(1), 345–350 (2016).
  • Depciuch J , StecM, MaximenkoA, BaranJ, Parlinska-WojtanM. Temperature-controlled synthesis of hollow, porous gold nanoparticles with wide range light absorption. J. Mater. Sci.55(12), 5257–5267 (2020).
  • Depciuch J , StecM, MaximenkoA, BaranJ, Parlinska-WojtanM. Gold nanodahlias: potential nanophotosensitizer in photothermal anticancer therapy. J. Mater. Sci.55(6), 2530–2543 (2020).
  • Zong C , PremasiriR, LinHet al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat. Commun.10(1), 5318 (2019).
  • Lee M , LeeS, LeeJet al. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens. Bioelectron.26(5), 2135–2141 (2011).
  • Moskovits M . Surface-enhanced spectroscopy. Rev. Mod. Phys.57(3), 783–826 (1985).
  • Kühn S , HåkansonU, RogobeteL, SandoghdarV. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett.97(1), 017402 (2006).
  • Chen J , HuangY, ZhaoS, LuX, TianJ. Gold nanoparticles-based fluorescence resonance energy transfer for competitive immunoassay of biomolecules. Analyst137(24), 5885–5890 (2012).
  • Fratoddi I , CartoniA, VendittiIet al. Gold nanoparticles functionalized by rhodamine B isothiocyanate: a new tool to control plasmonic effects. J. Colloid Interface Sci.513, 10–19 (2018).
  • Wang H , HuffTB, ZweifelDAet al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA102(44), 15752–15756 (2005).
  • Li J-L , GuM. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials31(36), 9492–9498 (2010).
  • Roupioz Y . Functionalization of gold nanoparticles for a color-based detection of adenosine in a bioassay. J. Chem. Educ.96(5), 1002–1007 (2019).
  • Lakowicz JR . Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem.298(1), 1–24 (2001).
  • Auten RL , DavisJM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr. Res.66(2), 121–127 (2009).
  • Jang B , ParkJ, TungC, KimI, ChoiY. Gold nanorod–photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano5(2), 1086–1094 (2011).
  • Vankayala R , SagadevanA, VijayaraghavanP, KuoCL, HwangKC. Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem. Int. Ed.50(45), 10640–10644 (2011).
  • Hernández-Rivera M , KumarI, ChoSYet al. High-performance hybrid bismuth-carbon nanotube based contrast agent for x-ray CT imaging. ACS Appl. Mater. Interfaces9(7), 5709–5716 (2017).
  • Dorsey JF , SunL, JohDYet al. Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl. Cancer Res.2(4), 280–291 (2013).
  • Borran AA , AghanejadA, FarajollahiA, BararJ, OmidiY. Gold nanoparticles for radiosensitizing and imaging of cancer cells. Radiat. Phys. Chem.152, 137–144 (2018).
  • Shrestha S , CooperLN, AndreevOA, ReshetnyakYK, AntoshMP. Gold nanoparticles for radiation enhancement in vivo. Jacobs J. Radiat. Oncol.3(1), 1–19 (2016).
  • Cutler CS , HennkensHM, SisayN, Huclier-MarkaiS, JurissonSS. Radiometals for combined imaging and therapy. Chem. Rev.113(2), 858–883 (2013).
  • Chanda N , KanP, WatkinsonLDet al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine6(2), 201–209 (2010).
  • Berning DE , KattiKV, VolkertWA, HigginbothamCJ, KetringAR. 198Au-labeled hydroxymethyl phosphines as models for potential therapeutic pharmaceuticals. Nucl. Med. Biol.25, 577–583 (1998).
  • Shukla R , ChandaN, ZambreAet al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl Acad. Sci. USA109(31), 12426–12431 (2012).
  • Fazaeli Y , AkhavanO, RahighiR, AboudzadehMR, KarimiE, AfaridehH. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C Mater. Biol. Appl.45, 196–204 (2014).
  • Adewale OB , DavidsH, CairncrossL, RouxS. Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors. Int. J. Toxicol.38(5), 357–384 (2019).
  • Lin Z , Monteiro-RiviereNA, RiviereJE. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.7(2), 189–217 (2015).
  • International Organization for Standardization. Biological evaluation of medical devices – Part 5: Tests for in vitro cytotoxicity (ISO 10993-5:2009). https://www.iso.org/standard/36406.html
  • Patra HK , BanerjeeS, ChaudhuriU, LahiriP, DasguptaAK. Cell selective response to gold nanoparticles. Nanomedicine3(2), 111–119 (2007).
  • Zhang X-D , WuHY, WuDet al. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine5(1), 771–781 (2010).
  • Costa E , Ferreira-GonçalvesT, ChasqueiraG, CabritaAS, FigueiredoIV, ReisCP. Experimental models as refined translational tools for breast cancer research. Sci. Pharm.88(3), 1–29 (2020).
  • de Oliveira IS , Alexandre-SilvaGM, CordeiroFAet al. Research models in biomedical sciences: advantages and limitations. Open Access J. Biomed. Sci.2(4), 464–476 (2020).
  • Chithrani BD , GhazaniAA, ChanWCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6(4), 662–668 (2006).
  • Huo S , MaH, HuangKet al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res.73(1), 319–330 (2013).
  • Pan Y , LeifertA, RuauDet al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small5(18), 2067–2076 (2009).
  • Mukherjee P , BhattacharyaR, WangPet al. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res.11(9), 3530–3534 (2005).
  • Bhattacharya R , PatraCR, VermaR, KumarS, GreippPR, MukherjeeP. Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv. Mater.19(5), 711–716 (2007).
  • Wang L , LiuY, LiWet al. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett.11(2), 772–780 (2011).
  • Bailly A-L , CorreardF, PopovAet al. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep.9(1), 12890 (2019).
  • Aborig M , MalikPRV, NambiarSet al. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics11(4), 179 (2019).
  • Hainfeld JF , SlatkinDN, SmilowitzHM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.49(18), N309–N315 (2004).
  • Hainfeld JF , SlatkinDN, FocellaTM, SmilowitzHM. Gold nanoparticles: a new x-ray contrast agent. Br. J. Radiol.79, 248–253 (2006).
  • Cho W-S , ChoM, JeongJet al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.245(1), 116–123 (2010).
  • Sonavane G , TomodaK, MakinoK. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces66(2), 274–280 (2008).
  • Sykes EA , ChenJ, ZhengG, ChanWCW. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano8(6), 5696–5706 (2014).
  • Blanco E , ShenH, FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol.33(9), 941–951 (2015).
  • Jin Y , GaoX. Spectrally tunable leakage-free gold nanocontainers. J. Am. Chem. Soc.131(49), 17774–17776 (2009).
  • Arnida , Janát-AmsburyMM, RayA, PetersonCM, GhandehariH. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm.77(1), 417–423 (2011).
  • Hillyer JF , AlbrechtRM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci.90(12), 1927–1936 (2001).
  • Schleh C , Semmler-BehnkeM, LipkaJet al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology6(1), 36–46 (2012).
  • Semmler-Behnke M , LipkaJ, WenkAet al. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part. Fibre Toxicol.11(1), 1–12 (2014).
  • Perrault SD , WalkeyC, JenningsT, FischerHC, ChanWCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett.9(5), 1909–1915 (2009).
  • Van Haute D , BerlinJM. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles. Ther. Deliv.8(9), 763–774 (2017).
  • Zhou C , LongM, QinY, SunX, ZhengJ. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed.50(14), 3168–3172 (2011).
  • Yu M , ZhengJ. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano9(7), 6655–6674 (2015).
  • Renaud G , HamiltonRL, HavelRJ. Hepatic metabolism of colloidal gold-low-density lipoprotein complexes in the rat: evidence for bulk excretion of lysosomal contents into bile. Hepatology9(3), 380–392 (1989).
  • Sadauskas E , WallinH, StoltenbergMet al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol.4(3), 1–7 (2007).
  • Sadauskas E , DanscherG, StoltenbergM, VogelU, LarsenA, WallinH. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine5(2), 162–169 (2009).
  • Semmler-Behnke M , KreylingWG, LipkaJet al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small4(12), 2108–2111 (2008).
  • Wang L , LiY-F, ZhouLet al. Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal. Bioanal. Chem.396(3), 1105–1114 (2010).
  • Higby GJ . Gold in medicine. A review of its use in the West before 1900. Gold Bull.15(4), 130–140 (1982).
  • Greenbaum FR . Gold compounds for medicinal use*. J. Am. Pharm. Assoc.17(3), 232–238 (1928).
  • Benedek TG . The history of gold therapy for tuberculosis. J. Hist. Med. Allied Sci.59(1), 50–89 (2004).
  • Forestier J . The treatment of rheumatoid arthritis with gold salts injections. Lancet219(5661), 441–444 (1932).
  • Sherman AI , Ter-PogossianM. Lymph-node concentration of radioactive colloidal gold following interstitial injection. Cancer6(6), 1238–1240 (1953).
  • Faulk WP , TaylorGM. An immunocolloid method for the electron microscope. Immunochemistry8(11), 1081–1083 (1971).
  • Verma S , UtrejaP, RahmanM, KumarL. Gold nanoparticles and their applications in cancer treatment. Curr. Nanomed.8(3), 184–201 (2018).
  • Yang C , BrommaK, DiCiano-Oliveira C, ZafaranaG, van ProoijenM, ChithraniDB. Gold nanoparticle mediated combined cancer therapy. Cancer Nanotechnol.9, 4 (2018).
  • Sherwani MA , TufailS, KhanAA, OwaisM. Gold nanoparticle–photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in BALB/c mice. PLoS ONE10(7), 1–20 (2015).
  • Jiang P , WangY, ZhaoL, JiC, ChenD, NieL. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials8(12), 977 (2018).
  • Li Y , SchluesenerHJ, XuS. Gold nanoparticle-based biosensors. Gold Bull.43(1), 29–41 (2010).
  • Xu N , JinS, WangL. Metal nanoparticles-based nanoplatforms for colorimetric sensing: a review. Rev. Anal. Chem.40(1), 1–11 (2020).
  • Sun J , LuY, HeL, PangJ, YangF, LiuY. Colorimetric sensor array based on gold nanoparticles: design principles and recent advances. Trends Anal. Chem.122, 115754 (2020).
  • Yang CT , XuY, Pourhassan-MoghaddamMet al. Surface plasmon enhanced light scattering biosensing: size dependence on the gold nanoparticle tag. Sensors (Basel)19(2), 323 (2019).
  • Luminex® . The VERIGENE® System (2021). www.luminexcorp.com/eu/the-verigene-system/
  • Kim JS , KangGE, KimHS, KimHS, SongW, LeeKM. Evaluation of Verigene blood culture test systems for rapid identification of positive blood cultures. Biomed Res. Int.2016, 1081536 (2016).
  • Kosai K , SuzukiH, TamaiKet al. Multicenter evaluation of Verigene enteric pathogens nucleic acid test for detection of gastrointestinal pathogens. Sci. Rep.11(1), 1–5 (2021).
  • Chen C , LuoM, YeT, LiN, JiX, HeZ. Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Analyst140(13), 4515–4520 (2015).
  • Chah S , HammondMR, ZareRN. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem. Biol.12(3), 323–328 (2005).
  • Pinheiro T , FerrãoJ, MarquesACet al. Paper-based in-situ gold nanoparticle synthesis for colorimetric, non-enzymatic glucose level determination. Nanomaterials10(10), 1–20 (2020).
  • Brasiunas B , PopovA, RamanaviciusA, RamanavicieneA. Gold nanoparticle based colorimetric sensing strategy for the determination of reducing sugars. Food Chem.351, 129238 (2021).
  • Gao Y , WuY, DiJ. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc.173, 207–212 (2017).
  • Xia N , DengD, WangY, FangC, LiSJ. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen. Int. J. Nanomedicine13, 2521–2530 (2018).
  • Huang JY , LinHT, ChenTH, ChenCA, ChangHT, ChenCF. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sensors3(1), 174–182 (2018).
  • Akshaya K , ArthiC, PavithraAJet al. Bioconjugated gold nanoparticles as an efficient colorimetric sensor for cancer diagnostics. Photodiagnosis Photodyn. Ther.30, 101699 (2020).
  • Borghei YS , HosseiniM, DadmehrM, HosseinkhaniS, GanjaliMR, SheikhnejadR. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal. Chim. Acta904, 92–97 (2016).
  • Fathi F , JaliliR, AmjadiM, RashidiMR. SPR signals enhancement by gold nanorods for cell surface marker detection. BioImpacts9(2), 71–78 (2019).
  • Ermini ML , SongXC, ŠpringerT, HomolaJ. Peptide functionalization of gold nanoparticles for the detection of carcinoembryonic antigen in blood plasma via SPR-based biosensor. Front. Chem.7, 40 (2019).
  • Xia F , ZuoX, YangRet al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl Acad. Sci. USA107(24), 10837–10841 (2010).
  • Iglesias E . Gold nanoparticles as colorimetric sensors for the detection of DNA bases and related compounds. Molecules25(12), 2890 (2020).
  • Hakimian F , GhourchianH, HashemiAS, ArastooMR, BehnamRad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci. Rep.8(1), 1–9 (2018).
  • Szekeres GP , KneippJ. SERS probing of proteins in gold nanoparticle agglomerates. Front. Chem.7, 30 (2019).
  • Al-Ogaidi I , GouH, Al-kazazAKAet al. A gold@silica core–shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal. Chim. Acta811, 76–80 (2014).
  • Lee DJ , KimDY. Hydrophobic paper-based SERS sensor using gold nanoparticles arranged on graphene oxide flakes. Sensors (Basel)19(24), 8–14 (2019).
  • Zheng P , LiM, JurevicR, CushingSK, LiuY, WuN. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva. Nanoscale7(25), 11005–11012 (2015).
  • Bi L , WangY, YangYet al. Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform. ACS Appl. Mater. Interfaces10(18), 15381–15387 (2018).
  • Fu X , FuX, WangQet al. Fluorescence switch biosensor based on quantum dots and gold nanoparticles for discriminative detection of lysozyme. Int. J. Biol. Macromol.103, 1155–1161 (2017).
  • Ghafary Z , HallajR, SalimiA, AkhtariK. A novel immunosensing method based on the capture and enzymatic release of sandwich-type covalently conjugated thionine–gold nanoparticles as a new fluorescence label used for ultrasensitive detection of hepatitis B virus surface antigen. ACS Omega4(13), 15323–15336 (2019).
  • Minopoli A , DellaVentura B, CampanileRet al. Randomly positioned gold nanoparticles as fluorescence enhancers in apta-immunosensor for malaria test. Mikrochim. Acta.188(3), 88 (2021).
  • Cheng D , HanW, YangK, SongY, JiangM, SongE. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Talanta130, 408–414 (2014).
  • You CC , MirandaOR, GiderBet al. Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol.2(5), 318–323 (2007).
  • Jin L , ShangL, GuoSet al. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron.26(5), 1965–1969 (2011).
  • Wang LL , QiaoJ, QiL, XuXZ, LiD. Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Sci. China Chem.58(9), 1508–1514 (2015).
  • Zhang H , FuX, HuJ, ZhuZ. Microfluidic bead-based multienzyme–nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels. Anal. Chim. Acta779, 64–71 (2013).
  • Halo TL , McMahonKM, AngeloniNLet al. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc. Natl Acad. Sci. USA111(48), 17104–17109 (2014).
  • Huang CC , ChiuSH, HuangYF, ChangHT. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal. Chem.79(13), 4798–4804 (2007).
  • Huang CC , ChiangCK, LinZH, LeeKH, ChangHT. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal. Chem.80(5), 1497–1504 (2008).
  • Xia X , YangM, OetjenLKet al. An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease activity. Nanoscale3(3), 950–953 (2011).
  • Oh E , HongMY, LeeD, NamSH, YoonHC, KimHS. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc.127(10), 3270–3271 (2005).
  • Ray PC , FortnerA, DarbhaGK. Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J. Phys. Chem. B110(42), 20745–20748 (2006).
  • Dubertret B , CalameM, LibchaberAJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol.19(4), 365–370 (2001).
  • Bouché M , HsuJC, DongYC, KimJ, TaingK, CormodeDP. Recent advances in molecular imaging with gold nanoparticles. Bioconjug. Chem.31(2), 303–314 (2020).
  • Wu Y , AliMRK, ChenK, FangN, El-SayedMA. Gold nanoparticles in biological optical imaging. Nano Today24, 120–140 (2019).
  • Xiong B , HuangZ, ZouH, QiaoC, HeY, YeungES. Single plasmonic nanosprings for visualizing reactive-oxygen-species-activated localized mechanical force transduction in live cells. ACS Nano11(1), 541–548 (2017).
  • Schneider R , GlaserT, BerndtM, DiezS. Using a quartz paraboloid for versatile wide-field TIR microscopy with sub-nanometer localization accuracy. Opt. Express21(3), 3523 (2013).
  • Liu M , LiQ, LiangLet al. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun.8, 15646 (2017).
  • El-Sayed IH , HuangX, El-SayedMA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett.5(5), 829–834 (2005).
  • Luo D , WangX, BurdaC, BasilionJP. Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers (Basel)13(8), 1825 (2021).
  • Mahan MM , DoironAL. Gold nanoparticles as x-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J. Nanomater.2018, 5837276 (2018).
  • Daems N , MichielsC, LucasS, BaatoutS, AertsA. Gold nanoparticles meet medical radionuclides. Nucl. Med. Biol.100–101, 61–90 (2021).
  • Cai X , LiW, KimC, YuanY, WangLV, XiaY. In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano5(12), 9658–9667 (2011).
  • Maccora D , DiniV, BattocchioCet al. Gold nanoparticles and nanorods in nuclear medicine: a mini review. Appl. Sci.9, 3232 (2019).
  • Dong YC , HajfathalianM, MaidmentPSNet al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep.9(1), 1–13 (2019).
  • Zhang Y , WenS, ZhaoLet al. Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. Nanoscale8(10), 5567–5577 (2016).
  • Ghosh P , HanG, DeM, KimCK, RotelloVM. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev.60(11), 1307–1315 (2008).
  • Remant BKC , ThapaB, BhattaraiN. Gold nanoparticle-based gene delivery: promises and challenges. Nanotechnol. Rev.3(3), 269–280 (2014).
  • Kong FY , ZhangJW, LiRF, WangZX, WangWJ, WangW. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules22(9), 1445 (2017).
  • Yafout M , OusaidA, KhayatiY, ElOtmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci. African11, e00685 (2021).
  • Gagliardi A , GiulianoE, VenkateswararaoEet al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol.12, 601626 (2021).
  • Reis CP , GomesA, RijoPet al. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles. Microsc. Microanal.19(5), 1141–1150 (2013).
  • Reis CP , DamgéC. Nanotechnology as a promising strategy for alternative routes of insulin delivery. Methods Enzymol.508, 271–294 (2012).
  • Fuller MA , CareyA, WhileyH, KurimotoR, EbaraM, KöperI. Nanoparticles in an antibiotic-loaded nanomesh for drug delivery. RSC Adv.9(52), 30064–30070 (2019).
  • Fuller M , WhileyH, KöperI. Antibiotic delivery using gold nanoparticles. SN Appl. Sci.2(6), 1–7 (2020).
  • Fan Y , PauerAC, GonzalesAA, FenniriH. Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes. Int. J. Nanomedicine14, 7281–7289 (2019).
  • Rosi NL , GiljohannDA, ThaxtonCS, Lytton-JeanAKR, HanMS, MirkinCA. Oligonucleotide-modified gold nanoparticles for infracellular gene regulation. Science312(5776), 1027–1030 (2006).
  • Rathinaraj P , Al-JumailyAM, HuhDS. Internalization: acute apoptosis of breast cancer cells using Herceptin-immobilized gold nanoparticles. Breast Cancer Targets Ther.7, 51–58 (2015).
  • Pal K , Al-SuraihF, Gonzalez-RodriguezRet al. Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale9(40), 15622–15634 (2017).
  • Liu Y , HeM, NiuMet al. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency. Int. J. Nanomedicine10, 3081–3095 (2015).
  • Teixeira RAR , LatalizaAAB, RaposoNRB, CostaLAS, Sant'AnaAC. Insights on the transport of tamoxifen by gold nanoparticles for MCF-7 breast cancer cells based on SERS spectroscopy. Colloids Surf. B Biointerfaces170, 712–717 (2018).
  • Farooq MU , NovosadV, RozhkovaEAet al. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep.8(1), 1–12 (2018).
  • Yang C , UertzJ, ChithraniDB. Colloidal gold-mediated delivery of bleomycin for improved outcome in chemotherapy. Nanomaterials6(3), 1–15 (2016).
  • Taghdisi SM , DaneshNM, LavaeePet al. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater. Sci. Eng. C61, 753–761 (2016).
  • Paciotti GF , ZhaoJ, CaoSet al. Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjug. Chem.27(11), 2646–2657 (2016).
  • Ali MM , RajabNA, AbdulrasoolAA. Etoposide-loaded gold nanoparticles: preparation, characterization, optimization and cytotoxicity assay. Syst. Rev. Pharm.11(2), 372–381 (2020).
  • Sulaiman GM , WaheebHM, JabirMS, KhazaalSH, DewirYH, NaidooY. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci. Rep.10(1), 1–16 (2020).
  • Wang F , WangYC, DouS, XiongMH, SunTM, WangJ. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano5(5), 3679–3692 (2011).
  • Zhu DM , XieW, XiaoYSet al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology29(8), 084002 (2018).
  • Li Y , HeD, TuJet al. The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy. Nanoscale10(18), 8628–8641 (2018).
  • Sheth RA , WenX, LiJet al. Doxorubicin-loaded hollow gold nanospheres for dual photothermal ablation and chemoembolization therapy. Cancer Nanotechnol.11(1), 1–16 (2020).
  • You J , ZhangG, LiC. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano4(2), 1033–1041 (2010).
  • Wang Q , ZhangX, SunYet al. Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer. Biomaterials212, 73–86 (2019).
  • Mehta SR , SuhagV, SemwalM, SharmaN. Radiotherapy: basic concepts and recent advances. Med. J. Armed Forces India66(2), 158–162 (2010).
  • Čipak Gašparović A . Free radical research in cancer. Antioxidants9(2), 157 (2020).
  • Kong T , ZengJ, WangXet al. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small4(9), 1537–1543 (2008).
  • Luo D , WangX, ZengS, RamamurthyG, BurdaC, BasilionJP. Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: does size matter for targeted particles?Chem. Sci.10(35), 8119–8128 (2019).
  • Chang MY , ShiauAL, ChenYH, ChangCJ, ChenHHW, WuCL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci.99(7), 1479–1484 (2008).
  • Park J , LeeYK, ParkIK, HwangSR. Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy. Biomedicines9(1), 1–17 (2021).
  • Niculescu A , GrumezescuAM. Photodynamic therapy – an up-to-date review. Appl. Sci.11, 3626 (2021).
  • Jacques SL . Optical properties of biological tissues: a review. Phys. Med. Biol.58(11), R37–R61 (2013).
  • García Calavia P , BruceG, Pérez-GarcíaL, RussellDA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci.17(11), 1534–1552 (2018).
  • Yang Y , GaoN, HuYet al. Gold nanoparticle-enhanced photodynamic therapy: effects of surface charge and mitochondrial targeting. Ther. Deliv.6(3), 307–321 (2015).
  • Bao Z , LiuX, LiuY, LiuH, ZhaoK. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J. Pharm. Sci.11(3), 349–364 (2016).
  • Zou L , WangH, HeBet al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics6(6), 762–772 (2016).
  • Liu T-M , CondeJ, LipińskiT, BednarkiewiczA, HuangC-C. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci.88, 89–135 (2017).
  • Huang X , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23(3), 217–228 (2008).
  • Pérez-Hernández M . Mechanisms of cell death induced by optical hyperthermia. In: Nanomaterials for Magnetic and Optical Hyperthermia Applications.FratilaRM, DeLa Fuente JM ( Eds). Elsevier, Amsterdam, Netherlands, 201–228 (2019).
  • Mendes R , PedrosaP, LimaJC, FernandesAR, BaptistaPV. Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of gold nanoparticles. Sci. Rep.7(1), 1–9 (2017).
  • Nasseri B , TurkM, KosemehmetogluKet al. The pimpled gold nanosphere: a superior candidate for plasmonic photothermal therapy. Int. J. Nanomedicine15, 2903–2920 (2020).
  • Melamed JR , EdelsteinRS, DayES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano9(1), 6–11 (2015).
  • Li JJ , HartonoD, OngCN, BayBH, YungLYL. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials31(23), 5996–6003 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.