632
Views
0
CrossRef citations to date
0
Altmetric
Review

Nano-Based Targeted Drug Delivery for Lung Cancer: Therapeutic Avenues and Challenges

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1855-1869 | Received 29 Sep 2021, Accepted 04 Mar 2022, Published online: 21 Mar 2022

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018).
  • Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp. Oncol. 25(1), 45–52 (2021).
  • Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat. Rev. Dis. Primers 7(1), 3 (2021).
  • Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small-cell lung cancer. Nature 553(7689), 446–454 (2018).
  • Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: biology and treatment options. Biochim. Biophys. Acta 1856(2), 189–210 (2015).
  • Norouzi M, Hardy P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater. 121, 134–142 (2021).
  • Zhou J, Kang Y, Chen L et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front. Pharmacol. 11, 343 (2020).
  • Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47(19), 6645–6653 (2018).
  • Carnio S, Novello S, Mele T, Levra MG, Scagliotti GV. Extending survival of stage IV non-small-cell lung cancer. Semin. Oncol. 41(1), 69–92 (2014).
  • Razak SA A, Mohd Gazzali A, Fisol FA et al. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: an overview. Cancers (Basel) 13(3), 400 (2021).
  • Shirakawa K, Takara K, Tanigawara Y et al. Interaction of docetaxel (“Taxotere”) with human P-glycoprotein. Jpn J. Cancer Res. 90(12), 1380–1386 (1999).
  • Zaffaroni N, Pennati M, Colella G et al. Expression of the anti-apoptotic gene SURVIVIN correlates with taxol resistance in human ovarian cancer. Cell. Mol. Life Sci. 59(8), 1406–1412 (2002).
  • Karpuz M, Silindir-Gunay M, Ozer AY. Clinical applications of nanosized drug-delivery systems in lung cancer imaging and therapy. Crit. Rev. Ther. Drug Carrier Syst. 37(5), 435–471 (2020).
  • Yu HP, Aljuffali IA, Fang JY. Injectable drug-loaded nanocarriers for lung cancer treatments. Curr. Pharm. Des. 23(3), 481–494 (2017).
  • AlSawaftah NM, Awad NS, Paul V, Kawak PS, Al-Sayah MH, Husseini GA. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci. Rep. 11(1), 11589 (2021).
  • Greish K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet? Drug Discov. Today Technol. 9(2), e71–e174 (2012).
  • Hussain S. Nanomedicine for treatment of lung cancer. Adv. Exp. Med. Biol. 890, 137–147 (2016).
  • Gangopadhyay S, Nikam RR, Gore KR. Folate receptor-mediated siRNA delivery: recent developments and future directions for RNAi therapeutics. Nucleic Acid Ther. 31(4), 245–270 (2021).
  • Yao W, Yao J, Qian F et al. Paclitaxel-loaded and folic acid-modified PLGA nanomedicine with glutathione response for the treatment of lung cancer. Acta Biochim. Biophys. Sin. (Shanghai) 53(8), 1027–1036 (2021).
  • Ezhilarasan D. Advantages and challenges in nanomedicines for chronic liver diseases: a hepatologist’s perspectives. Eur. J. Pharmacol. 893, 173832 (2021).
  • Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer. Front. Chem. 9, 637754 (2021).
  • Kotta-Loizou I, Giaginis C, Theocharis S. Clinical significance of HuR expression in human malignancy. Med. Oncol. 31(9), 161 (2014).
  • Zhou F, Zhang F, Zhou C et al. Human antigen R and drug resistance in tumors. Invest. New Drugs 37(5), 1107–1116 (2019).
  • Muralidharan R, Mehta M, Ahmed R et al. HuR-targeted small molecule inhibitor exhibits cytotoxicity towards human lung cancer cells. Sci. Rep. 7(1), 9694 (2017).
  • Amreddy N, Babu A, Panneerselvam J et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 14(2), 373–384 (2018).
  • Xu F, Gu J, Lu C et al. Calpain-2 enhances non-small-cell lung cancer progression and chemoresistance to paclitaxel via EGFR-pAKT pathway. Int. J. Biol. Sci. 15(1), 127–137 (2019).
  • Park YI, Kwon SH, Lee G et al. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small-cell lung cancer. J. Control. Rel. 330, 1–14 (2021).
  • Rawal S, Bora V, Patel B, Patel M. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small-cell lung cancer. Drug Deliv. Transl. Res. 11(5), 2030–2051 (2021).
  • Zhang J, Shi W, Xue G, Ma Q, Cui H, Zhang L. Improved therapeutic efficacy of topotecan against A549 lung cancer cells with folate-targeted topotecan liposomes. Curr. Drug Metab. 21(11), 902–909 (2020).
  • Joerger M, Omlin A, Cerny T, Früh M. The role of pemetrexed in advanced non-small-cell lung cancer: special focus on pharmacology and mechanism of action. Curr. Drug Targets 11(1), 37–47 (2010).
  • Ak G, Aksu D, Çapkın E, Sarı Ö, Kımız Geboloğlu I, Şanlıer ŞH. Delivery of pemetrexed by magnetic nanoparticles: design, characterization, in vitro and in vivo assessment. Prep. Biochem. Biotechnol. 50(3), 215–225 (2020).
  • Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics 9(10), 1367–1375 (2017).
  • Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 133, 46–54 (2019).
  • De Vico G, Martano M, Maiolino P, Carella F, Leonardi L. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas. Vet. Med. Sci. 6(3), 272–276 (2020).
  • Hagag AA, Badraia IM, Abdelmageed MM, Hablas NM, Hazzaa SME, Nosair NA. Prognostic value of transferrin receptor-1 (CD71) expression in acute lymphoblastic leukemia. Endocr. Metab. Immune. Disord. Drug Targets 18(6), 610–617 (2018).
  • Calzolari A, Oliviero I, Deaglio S et al. Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol. Dis. 39(1), 82–91 (2007).
  • Wu Y, Xu J, Chen J, Zou M, Rusidanmu A, Yang R. Blocking transferrin receptor inhibits the growth of lung adenocarcinoma cells in vitro. Thorac. Cancer 9(2), 253–261 (2018).
  • Whitney JF, Clark JM, Griffin TW, Gautam S, Leslie KO. Transferrin receptor expression in nonsmall cell lung cancer. Histopathologic and clinical correlates. Cancer 76(1), 20–25 (1995).
  • Chan MH, Chan YC, Liu RS, Hsiao M. A selective drug delivery system based on phospholipid-type nanobubbles for lung cancer therapy. Nanomedicine (Lond.) 15(27), 2689–2705 (2020).
  • Wu YL, Ahn MJ, Garassino MC et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J. Clin. Oncol. 36(26), 2702–2709 (2018).
  • Burel-Vandenbos F, Ambrosetti D, Coutts M, Pedeutour F. EGFR mutation status in brain metastases of non-small-cell lung carcinoma. J. Neurooncol. 111(1), 1–10 (2013).
  • Li W, Sparidans RW, Wang Y et al. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ROS1 inhibitor lorlatinib. Int. J. Cancer 143(8), 2029–2038 (2018).
  • Wang X, Mao W, Wang Z et al. Enhanced anti-brain metastasis from non-small-cell lung cancer of osimertinib and doxorubicin co-delivery targeted nanocarrier. Int. J. Nanomed. 15, 5491–5501 (2020).
  • Tan S, Wang G. Lung cancer targeted therapy: folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin. Biomed. Pharmacother. 102, 55–63 (2018).
  • Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front. Bioeng. Biotechnol. 8, 166 (2020).
  • Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond.) 11(1), 81–100 (2016).
  • Yu L, Xu M, Xu W et al. Enhanced cancer-targeted drug delivery using precoated nanoparticles. Nano Lett. 20(12), 8903–8911 (2020).
  • Rebuzzi SE, Zullo L, Rossi G et al. Novel emerging molecular targets in non-small-cell lung cancer. Int. J. Mol. Sci. 22(5), 2625 (2021).
  • Zhang Z, Cheng W, Pan Y, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J. Mater. Chem. B 8(4), 655–665 (2020).
  • Jha A, Viswanadh MK, Burande AS et al. DNA biodots based targeted theranostic nanomedicine for the imaging and treatment of non-small-cell lung cancer. Int. J. Biol. Macromol. 150, 413–425 (2020).
  • Madajewski B, Chen F, Yoo B et al. Molecular engineering of ultrasmall silica nanoparticle-drug conjugates as lung cancer therapeutics. Clin. Cancer Res. 26(20), 5424–5437 (2020).
  • Pang J, Xing H, Sun Y, Feng S, Wang S. Non-small-cell lung cancer combination therapy: hyaluronic acid modified, epidermal growth factor receptor targeted, pH sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus bevacizumab. Biomed. Pharmacother. 125, 109861 (2020).
  • Aksorn N, Chanvorachote P. Integrin as a molecular target for anti-cancer approaches in lung cancer. Anticancer Res. 39(2), 541–548 (2019).
  • Yan P, Zhu H, Yin L et al. Integrin αvβ6 promotes lung cancer proliferation and metastasis through upregulation of IL-8-mediated MAPK/ERK signaling. Transl. Oncol. 11(3), 619–627 (2018).
  • Elayadi AN, Samli KN, Prudkin L et al. A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for non-small-cell lung cancer. Cancer Res. 67(12), 5889–5895 (2007).
  • Guthi JS, Yang SG, Huang G et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharm. 7(1), 32–40 (2010).
  • Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 integrin induces partial EMT independent of TGF-β signaling. Commun. Biol. 4(1), 490 (2021).
  • Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9(11), 2961–2973 (2012).
  • Fu S, Zhao Y, Sun J et al. Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf. B Biointerfaces 201, 111623 (2021).
  • Raniszewska A, Kwiecień I, Rutkowska E, Rzepecki P, Domagała-Kulawik J. Lung cancer stem cells – origin, diagnostic techniques and perspective for therapies. Cancers (Basel) 13(12), 2996 (2021).
  • Huang X, Wan J, Leng D, Zhang Y, Yang S. Dual-targeting nanomicelles with CD133 and CD44 aptamers for enhanced delivery of gefitinib to two populations of lung cancer-initiating cells. Exp. Ther. Med. 19(1), 192–204 (2020).
  • Zhang Y, Xia Q, Wu T et al. A novel multi-functionalized multicellular nanodelivery system for non-small-cell lung cancer photochemotherapy. J. Nanobiotechnol. 19(1), 245 (2021).
  • Shahriari M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small-cell lung cancer. J. Control. Rel. 335, 369–388 (2021).
  • Moody TW, Leyton J, John C. Sigma ligands inhibit the growth of small-cell lung cancer cells. Life Sci. 66(20), 1979–1986 (2000).
  • Kim MS, Haney MJ, Zhao Y et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine 14(1), 195–204 (2018).
  • Garizo AR, Castro F, Martins C et al. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J. Control. Rel. 337, 329–342 (2021).
  • Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer – a review. Target Oncol. 9(4), 295–310 (2014).
  • Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 11(10), 2376 (2019).
  • Ezhilarasan D, Sokal E, Karthikeyan S, Najimi M. Plant derived antioxidants and antifibrotic drugs: past, present and future. J. Coast. Life Med. 2(9), 738–745 (2014).
  • Almasi CE, Drivsholm L, Pappot H, Høyer-Hansen G, Christensen IJ. The liberated domain I of urokinase plasminogen activator receptor – a new tumour marker in small-cell lung cancer. APMIS 121(3), 189–196 (2013).
  • Hong Y, Che S, Hui B et al. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed. Pharmacother. 112, 108614 (2019).
  • Ibrahim S, Tagami T, Kishi T, Ozeki T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int. J. Pharm. 540(1–2), 40–49 (2018).
  • Mahmoodi Chalbatani G, Dana H, Gharagouzloo E et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int. J. Nanomed. 14, 3111–3128 (2019).
  • Kara G, Parlar A, Cakmak MC, Cokol M, Denkbas EB, Bakan F. Silencing of survivin and cyclin B1 through siRNA-loaded arginine modified calcium phosphate nanoparticles for non-small-cell lung cancer therapy. Colloids Surf. B Biointerfaces 196, 111340 (2020).
  • Akbaba H, Erel-Akbaba G, Kotmakçı M, Başpınar Y. Enhanced cellular uptake and gene silencing activity of survivin-siRNA via ultrasound-mediated nanobubbles in lung cancer cells. Pharm. Res. 37(8), 165 (2020).
  • Yang Y, Han Y, Sun Q et al. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J. Nanobiotechnol. 19(1), 54 (2021).
  • Anagnostou VK, Lowery FJ, Zolota V et al. High expression of BCL-2 predicts favorable outcome in non-small-cell lung cancer patients with non-squamous histology. BMC Cancer 10, 186 (2010).
  • D’Aguanno S, Del Bufalo D. Inhibition of anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: current overview in cancer. Cells 9(5), 1287 (2020).
  • Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed. Pharmacother. 129, 110371 (2020).
  • Devaraj E, Perumal E, Subramaniyan R, Najimi M. Liver fibrosis: extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology doi: 10.1002/hep.32239 (2021).
  • Wang Y, Guo M, Lin D et al. Docetaxel-loaded exosomes for targeting non-small-cell lung cancer: preparation and evaluation in vitro and in vivo. Drug Deliv. 28(1), 1510–1523 (2021).
  • Lathwal S, Yerneni SS, Boye S et al. Engineering exosome polymer hybrids by atom transfer radical polymerization. Proc. Natl Acad. Sci. USA 118(2), e2020241118 (2021).
  • Bertino EM, Williams TM, Nana-Sinkam SP et al. Stromal caveolin-1 is associated with response and survival in a phase II trial of nab-paclitaxel with carboplatin for advanced NSCLC patients. Clin. Lung Cancer 16(6), 466–474 (2015).
  • Hrkach J, Von Hoff D, Mukkaram Ali M et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128ra39 (2012).
  • Zhu HZ, Hou J, Guo Y et al. Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv. 25(1), 1974–1983 (2018).
  • Itani R, Al Faraj A. siRNA conjugated nanoparticles – a next generation strategy to treat lung cancer. Int. J. Mol. Sci. 20(23), 6088 (2019).
  • Wu R, Zhang Z, Wang B et al. Combination chemotherapy of lung cancer – co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid-polymer hybrid nanoparticles. Drug Des. Devel. Ther. 14, 2249–2261 (2020).
  • de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J. Immunotoxicol. 18(1), 61–73 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.