56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ternary Nanocomposite Potentiates The Lysophosphatidic Acid Effect on Human Osteoblast (MG63) Maturation

ORCID Icon, &
Pages 1459-1475 | Received 20 Apr 2023, Accepted 30 Aug 2023, Published online: 10 Oct 2023

References

  • Eichholtz T , JalinkK, FahrenfortI, MoolenaarWH. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J.291(Pt 3), 677–680 (1993).
  • Mansell JP , NowghaniM, PabbruweM, PatersonI, SmithA, BlomA. Lysophosphatidic acid and calcitriol co-operate to promote human osteoblastogenesis: requirement of albumin-bound LPA. Prostaglandins Other Lipid Mediat.95(1–4), 45–52 (2011).
  • Shiel AI , AyreWN, BlomAWet al. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. J. Orthop. Translat.23, 140–151 (2020).
  • Mansell JP , CookeM, ReadMet al. Chitinase 3-like 1 expression by human (MG63) osteoblasts in response to lysophosphatidic acid and 1,25-dihydroxyvitamin D3. Biochimie128, 193–200 (2016).
  • Elkhenany H , ElkodousMA, NewbySD, El-DerbyAM, DharM, El-BadriN. Tissue engineering modalities and nanotechnology. El-BadriN. (eds) In: Regenerative Medicine and Stem Cell Biology. Learning Materials in Biosciences.Springer, Cham, 289–322 (2020).
  • El-Badri N , ElkhenanyH. Toward the nanoengineering of mature, well-patterned and vascularized organoids. Nanomedicine16(15), 1255–1258 (2021).
  • Strub M , Van BellinghenX, FiorettiFet al. Maxillary bone regeneration based on nanoreservoirs functionalized ε-polycaprolactone biomembranes in a mouse model of jaw bone lesion. Biomed. Res. Int.2018, 7380389 (2018).
  • Elkhateeb OM , BadawyMEI, NoreldinAE, Abou-AhmedHM, El-KammarMH, ElkhenanyHA. Comparative evaluation of propolis nanostructured lipid carriers and its crude extract for antioxidants, antimicrobial activity, and skin regeneration potential. BMC Complement. Med. Ther.22(1), 256 (2022).
  • Bonilla P , HernandezJ, GiraldoEet al. Human-induced neural and mesenchymal stem cell therapy combined with a curcumin nanoconjugate as a spinal cord injury treatment. Int. J. Mol. Sci.22(11), 5966 (2021).
  • Elkhenany H , BonillaP, GiraldoEet al. A hyaluronic acid demilune scaffold and polypyrrole-coated fibers carrying embedded human neural precursor cells and curcumin for surface capping of spinal cord injuries. Biomedicines9(12), 1928 (2021).
  • Elkhenany H , AmelseL, LafontAet al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J. Appl. Toxicol.35(4), 367–374 (2015).
  • Elkhenany H , BourdoS, HechtSet al. Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine13(7), 2117–2126 (2017).
  • Liu W , LuoH, WeiQet al. Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioact. Mater.9, 92–104 (2022).
  • Malhotra R , HanY, NijhuisCA, SilikasN, CastroNeto AH, RosaV. Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy. Dental Mat.37(10), 1553–1560 (2021).
  • Du H , ZhuX, FanC, XuS, WangY, ZhouY. Oxidative damage and OGG1 expression induced by a combined effect of titanium dioxide nanoparticles and lead acetate in human hepatocytes. Environ. Toxicol.27(10), 590–597 (2012).
  • Saquib Q , Al-KhedhairyAA, SiddiquiMA, Abou-TarboushFM, AzamA, MusarratJ. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol. In Vitro26(2), 351–361 (2012).
  • Hong F , WuN, ZhaoXet al. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice. J. Biomed. Mater. Res. A104(12), 2917–2927 (2016).
  • Eldebany N , AbdElkodous M, TohamyHet al. Gelatin loaded titanium dioxide and silver oxide nanoparticles: implication for skin tissue regeneration. Biol. Trace Elem. Res.199(10), 3688–3699 (2021).
  • Nikpasand A , ParviziMR. Evaluation of the effect of titanium dioxide nanoparticles/gelatin composite on infected skin wound healing; an animal model study. Bull. Emerg. Trauma7(4), 366–372 (2019).
  • Kubota S , JohkuraK, AsanumaKet al. Titanium oxide nanotubes for bone regeneration. J. Mater. Sci. Mater. Med.15(9), 1031–1035 (2004).
  • Souza W , PiperniSG, LaviolaPet al. The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids. Sci. Rep.9(1), 9309 (2019).
  • Niska K , PyszkaK, TukajC, WozniakM, RadomskiMW, Inkielewicz-StepniakI. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomed.10, 1095–1107 (2015).
  • Zhang Y , YuW, JiangX, LvK, SunS, ZhangF. Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts. J. Mater. Sci. Mater. Med.22(8), 1933–1945 (2011).
  • Quinn J , McFaddenR, ChanC-W, CarsonL. Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. iScience23(11), 101745 (2020).
  • Geetha M , SinghAK, AsokamaniR, GogiaAK. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog. Mater. Sci.54(3), 397–425 (2009).
  • Nie BE , HuoS, QuXet al. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact. Mater.16, 134–148 (2022).
  • Qing Y , ChengL, LiRet al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed.13, 3311–3327 (2018).
  • Khalandi B , AsadiN, MilaniMet al. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res. (Stuttg.)67(2), 70–76 (2017).
  • Klueh U , WagnerV, KellyS, JohnsonA, BryersJD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J. Biomed. Mater. Res.53(6), 621–631 (2000).
  • Long YM , HuLG, YanXTet al. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int. J. Nanomed.12, 3193–3206 (2017).
  • Gon S , FaulknerMJ, BeckwithJ. In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli. Antioxid. Redox Signal.8(5–6), 735–742 (2006).
  • Roy S , MartelJ, TenenhouseHS. Comparative effects of 1, 25‐dihydroxyvitamin D3 and EB 1089 on mouse renal and intestinal 25‐hydroxyvitamin D3‐24‐hydroxylase. J. Bone Miner. Res.10(12), 1951–1959 (1995).
  • Carlberg C , MathiasenIS, SauratJ-H, BinderupL. The 1,25-dihydroxyvitamin D3 (VD) analogues MC903, EB1089 and KH1060 activate the VD receptor: homodimers show higher ligand sensitivity than heterodimers with retinoid X receptors. J. Steroid Biochem. Mol. Biol.51(3-4), 137–142 (1994).
  • Binderup L , CarlbergC, KissmeyerA, LatiniS, MathiasenI, HansenCM. The need for new vitamin D analogues: mechanisms of action and clinical applications. In: Vitamin D: A Pluripotent Steroid Hormone: Structural Studies, Molecular Endocrinology and Clinical Applications. Proceedings of the Ninth Workshop on Vitamin D, Orlando, Florida, USA, May 28–June 2, 1994. Berlin, Boston: De Gruyter.NormanA, BouillonR, ThomassetM ( Eds). 55–63 (1994). https://doi.org/10.1515/9783110882513-022
  • Staudenmaier L . Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft31(2), 1481–1487 (1898).
  • Abd Elkodous M , SEl-Sayyad G, AbdelMaksoud MIAet al. Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J. Hazard. Mater.410, 124657 (2021).
  • Abd Elkodous M , El-SayyadGS, YoussrySMet al. Carbon-dot-loaded CoxNi1‐xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: an engineered nanocomposite for wastewater treatment. Sci. Rep.10(1), 11534 (2020).
  • Baldwin F , CraigTJ, ShielAI, CoxT, LeeK, MansellJP. Polydopamine-lysophosphatidate-functionalised titanium: a novel hybrid surface finish for bone regenerative applications. Molecules25(7), 1583 (2020).
  • Neary G , BlomAW, ShielAI, WhewayG, MansellJP. Development and biological evaluation of fluorophosphonate-modified hydroxyapatite for orthopaedic applications. J. Mater. Sci Mat. Med.29(8), 1–10 (2018).
  • Lancaster ST , BlackburnJ, BlomA, MakishimaM, IshizawaM, MansellJP. 24, 25-Dihydroxyvitamin D3 cooperates with a stable, fluoromethylene LPA receptor agonist to secure human (MG63) osteoblast maturation. Steroids83, 52–61 (2014).
  • Hou J , LanX, ShiJet al. A mild and simple method to fabricate commercial TiO2 (P25) and C60 composite for highly enhancing H2 generation. Int. J. Hydrogen Energy45(4), 2852–2861 (2020).
  • Abd Elkodous M , El-SayyadGS, MohamedAEet al. Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1-xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci.30(9), 8312–8328 (2019).
  • Xu D , WangC, WuJet al. Effects of low-concentration graphene oxide quantum dots on improving the proliferation and differentiation ability of bone marrow mesenchymal stem cells through the Wnt/β-catenin signaling pathway. ACS Omega7(16), 13546–13556 (2022).
  • Li C , LiZ, ZhangY, FathyAH, ZhouM. The role of the Wnt/β-catenin signaling pathway in the proliferation of gold nanoparticle-treated human periodontal ligament stem cells. Stem Cell Res. Ther.9(1), 1–10 (2018).
  • Dallas SL , BonewaldLF. Dynamics of the transition from osteoblast to osteocyte. Ann. NY Acad. Sci.1192(1), 437–443 (2010).
  • Filova E , SuchýT, SuchardaZet al. Support for the initial attachment, growth and differentiation of MG-63 cells: a comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites. Int. J. Nanomed.9, 3687 (2014).
  • Ryu JH , MessersmithPB, LeeH. Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces10(9), 7523–7540 (2018).
  • Choi YS , HongYJ, HurJet al. Bone nodule formation of MG63 cells is increased by the interplay of signaling pathways cultured on vitamin D3‐entrapped calcium phosphate films. Anim. Cells Syst. (Seoul)13(4), 363–370 (2009).
  • Frost R , JönssonGE, ChakarovD, SvedhemS, KasemoB. Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett.12(7), 3356–3362 (2012).
  • Chen J , ZhouG, ChenL, WangY, WangX, ZengS. Interaction of graphene and its oxide with lipid membrane: a molecular dynamics simulation study. J. Phys. Chem. C Nanomater. Interfaces120(11), 6225–6231 (2016).
  • Tsuzuki K , OkamotoY, IwasaS, IshikawaR, SandhuA, TeroR. Reduced graphene oxide as the support for lipid bilayer membrane. J. Phys. Conf. Ser.352(1), 12016 (2012).
  • Queffelec C , PetitM, JanvierP, KnightDA, BujoliB. Surface modification using phosphonic acids and esters. Chem. Rev.112(7), 3777–3807 (2012).
  • Blair HC , LarroutureQC, LiYet al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev.23(3), 268–280 (2017).
  • Elkhenany H , AmelseL, CaldwellM, AbdelwahedR, DharM. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J. Anim. Sci. Biotechnol.7(1), 1–13 (2016).
  • Luu HH , SongWX, LuoXet al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res.25(5), 665–677 (2007).
  • Tsao YT , HuangYJ, WuHH, LiuYA, LiuYS, LeeOK. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int. J. Mol. Sci.18(1), 1–13 (2017).
  • MacDonald AF , TrotterRD, GriffinCDet al. Genetic profiling of human bone marrow and adipose tissue-derived mesenchymal stem cells reveals differences in osteogenic signaling mediated by graphene. J. Nanobiotechnol.19, 1–18 (2021).
  • Kang MS , JeongSJ, LeeSHet al. Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater. Res.25(1), 1–9 (2021).
  • Song J-W , FanL-W. Temperature dependence of the contact angle of water: a review of research progress, theoretical understanding, and implications for boiling heat transfer. Adv. Colloid Interface Sci.288, 102339 (2021).
  • Strnad G , ChirilaN, PetrovanC, RussuO. Contact angle measurement on medical implant titanium based biomaterials. Procedia Technol.22, 946–953 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.