172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Caveolin-1-Dependent Tenascin C Inclusion in Extracellular Vesicles Is Required to Promote Breast Cancer Cell Malignancy

, , , , , , , , , , , , & ORCID Icon show all
Pages 1651-1668 | Received 19 May 2023, Accepted 14 Sep 2023, Published online: 06 Nov 2023

References

  • WHO . Breast Cancer. www.who.int/news-room/fact-sheets/detail/breast-cancer
  • Mehlen P , PuisieuxA. Metastasis: a question of life or death. Nat. Rev. Cancer6(6), 449–458 (2006).
  • Hanahan D , WeinbergRA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Núñez-Wehinger S , OrtizRJ, DíazN, DíazJ, Lobos-GonzálezL, QuestAF. Caveolin-1 in cell migration and metastasis. Curr. Mol. Med.14(2), 255–274 (2014).
  • Díaz-Valdivia NI , DíazJ, ContrerasPet al. The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Oncogene39, 3693–3709 (2020).
  • Urra H , TorresVA, OrtizRJet al. Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLOS ONE7(4), e33085 (2012).
  • Campos A , Burgos-RavanalR, GonzálezMF, HuilcamanR, LobosGonzález L, QuestAFG. Cell intrinsic and extrinsic mechanisms of Caveolin-1-enhanced metastasis. Biomolecules9(8), 314 (2019).
  • Llorente A , de MarcoMC, AlonsoMA. Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. J. Cell Sci.117(Pt 22), 5343–5351 (2004).
  • Logozzi M , DeMilito A, LuginiLet al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLOS ONE4(4), e5219–5229 (2009).
  • van Niel G , D’AngeloG, RaposoG. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol.19(4), 213–218 (2018).
  • Zijlstra A , DiVizio D. Size matters in nanoscale communication. Nat. Cell Biol.20(3), 228–230 (2018).
  • Albacete-Albacete L , Navarro-LéridaI, LópezJAet al. ECM deposition is driven by caveolin-1-dependent regulation of exosomal biogenesis and cargo sorting. J. Cell Biol.219(11), e202006178 (2020).
  • He M , QinH, PoonTCet al. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis36(9), 1008–1018 (2015).
  • Campos A , SalomonC, BustosRet al. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine13(20), 2597–2609 (2018).
  • Harris DA , PatelSH, GucekM, HendrixA, WestbroekW, TaraskaJW. Exosomes released from breast cancer carcinomas stimulate cell movement. PLOS ONE10(3), e0117495–e0117495 (2015).
  • Midwood KS , ChiquetM, TuckerRP, OrendG. Tenascin-C at a glance. J. Cell Sci.129(23), 4321–4327 (2016).
  • Chiquet-Ehrismann R , OrendG, ChiquetM, TuckerRP, MidwoodKS. Tenascins in stem cell niches. Matrix Biol.37, 112–123 (2014).
  • Midwood KS , HussenetT, LangloisB, OrendG. Advances in tenascin-C biology. Cell. Mol. Life Sci.68(19), 3175–3199 (2011).
  • Naik A , Al-YahyaeeA, AbdullahNet al. Neuropilin-1 promotes the oncogenic tenascin-C/integrin β3 pathway and modulates chemoresistance in breast cancer cells. BMC Cancer18(1), 533–533 (2018).
  • Qian S , TanX, LiuX, LiuP, WuY. Exosomal Tenascin-C induces proliferation and invasion of pancreatic cancer cells by WNT signaling. Oncol. Targets Ther.12, 3197–3205 (2019).
  • Ji H , GreeningDW, BarnesTWet al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics13(10–11), 1672–1686 (2013).
  • Zheng J , HernandezJM, DoussotAet al. Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreatic cancer. HPB (Oxford)20(7), 597–604 (2018).
  • Filipe V , HaweA, JiskootW. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceut. Res.27(5), 796–810 (2010).
  • Ros E , EncinaM, GonzálezFet al. Single cell migration profiling on a microenvironmentally tunable hydrogel microstructure device that enables stem cell potency evaluation. Lab Chip20(5), 958–972 (2020).
  • Cooper JA . Effects of cytochalasin and phalloidin on actin. J. Cell Biol.105(4), 1473–1478 (1987).
  • Albacete-Albacete L , Sánchez-ÁlvarezM, DelPozo MA. Extracellular vesicles: an emerging mechanism governing the secretion and biological roles of tenascin-C. Front. Immunol.12, Doi: 10.3389/fimmu.2021.671485 (2021).
  • Brösicke N , van LandeghemFK, SchefflerB, FaissnerA. Tenascin-C is expressed by human glioma in vivo and shows a strong association with tumor blood vessels. Cell Tissue Res.354(2), 409–430 (2013).
  • List of top 100 proteins that are often identified in exosomes. http://exocarta.org/exosome_markers_new
  • Borsi L , CarnemollaB, NicolòG, SpinaB, TanaraG, ZardiL. Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int. J. Cancer52(5), 688–692 (1992).
  • Lin C-J , YunE-J, LoUGet al. The paracrine induction of prostate cancer progression by caveolin-1. Cell Death Dis.10(11), 834–834 (2019).
  • Kia V , MortazaviY, ParyanM, BiglariA, Mohammadi-YeganehS. Exosomal miRNAs from highly metastatic cells can induce metastasis in non-metastatic cells. Life Sci.220, 162–168 (2019).
  • Fuentes P , SeséM, GuijarroPJet al. ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat. Commun.11(1), 4261 (2020).
  • Mulcahy LA , PinkRC, CarterDRF. Routes and mechanisms of extracellular vesicle uptake. J. Extracel. Vesicles3, Doi: 10.3402/jev.v3.24641 (2014).
  • Montecalvo A , LarreginaAT, ShufeskyWJet al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood119(3), 756–766 (2012).
  • Svensson KJ , ChristiansonHC, WittrupAet al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem.288(24), 17713–17724 (2013).
  • Bonsergent E , GrisardE, BuchrieserJ, SchwartzO, ThéryC, LavieuG. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat. Commun.12(1), 1864 (2021).
  • Ramírez-Ricardo J , Leal-OrtaE, Martínez-BaezaEet al. Circulating extracellular vesicles from patients with breast cancer enhance migration and invasion via a Src-dependent pathway in MDA-MB-231 breast cancer cells. Mol. Med. Rep.22(3), 1932–1948 (2020).
  • Hirose H , HiraiY, SasakiM, SawaH, FutakiS. Quantitative analysis of extracellular vesicle uptake and fusion with recipient cells. Bioconjug. Chem.33(10), 1852–1859 (2022).
  • O’Brien K , UghettoS, MahjoumS, NairAV, BreakefieldXO. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Rep.39(2), Doi: 10.1016/j.celrep.2022.110651 (2022).
  • Sheen-Chen S-M , LiuY-W, SunC-Ket al. Abdominal carcinomatosis attributed to metastatic breast carcinoma. Dig. Dis. Sci.53(11), 3043–3045 (2008).
  • Cardi M , SammartinoP, FramarinoMLet al. Treatment of peritoneal carcinomatosis from breast cancer by maximal cytoreduction and HIPEC: a preliminary report on 5 cases. Breast22(5), 845–849 (2013).
  • Bertozzi S , LonderoAP, CedoliniCet al. Prevalence, risk factors, and prognosis of peritoneal metastasis from breast cancer. SpringerPlus4(1), 688 (2015).
  • Stollfuss J , LandvogtN, AbensteinMet al. Non-invasive imaging of implanted peritoneal carcinomatosis in mice using PET and bioluminescence imaging. EJNMMI Res.5(1), 44 (2015).
  • Aslakson CJ , MillerFR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res.52(6), 1399–1405 (1992).
  • Taneja P , FrazierDP, KendigRDet al. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev. Mol. Diagn.9(5), 423–440 (2009).
  • Ceelen WP , LevineE ( Eds). Intraperitoneal Cancer Therapy: Principles and Practice (1st Edition).CRC Press, FL, USA (2015).
  • Lundström A , HolmbomJ, LindqvistC, NordströmT. The role of alpha2 beta1 and alpha3 beta1 integrin receptors in the initial anchoring of MDA-MB-231 human breast cancer cells to cortical bone matrix. Biochem. Biophys. Res. Commun.250(3), 735–740 (1998).
  • Lokmic Z , LämmermannT, SixtM, CardellS, HallmannR, SorokinL. The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Semin. Immunol.20(1), 4–13 (2008).
  • Nagaharu K , ZhangX, YoshidaTet al. Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. Am. J. Pathol.178(2), 754–763 (2011).
  • Mirzaei R , SarkarS, DzikowskiLet al. Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. OncoImmunology7(10), e1478647 (2018).
  • Liu Y , CaoX. Characteristics and significance of the pre-metastatic niche. Cancer Cell30(5), 668–681 (2016).
  • Peinado H , ZhangH, MateiIRet al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer17(5), 302–317 (2017).
  • Doglioni G , ParikS, FendtSM. Interactions in the (pre)metastatic niche support metastasis formation. Front. Oncol.9, 219 (2019).
  • Dong Q , LiuX, ChengK, ShengJ, KongJ, LiuT. Pre-metastatic niche formation in different organs induced by tumor extracellular vesicles. Front. Cell Dev. Biol.9, Doi: 10.3389/fcell.2021.733627 (2021).
  • Wolf T , BaierSR, ZempleniJ. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. J. Nutr.145(10), 2201–2206 (2015).
  • Calvo A , CatenaR, NobleMSet al. Identification of VEGF-regulated genes associated with increased lung metastatic potential: functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene27(40), 5373–5384 (2008).
  • Tanaka K , HiraiwaN, HashimotoH, YamazakiY, KusakabeM. Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int. J. Cancer108(1), 31–40 (2004).
  • Srikrishna G . S100A8 and S100A9: new insights into their roles in malignancy. J. Innate Immun.4(1), 31–40 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.