423
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elevated Glutathione in Researchers Exposed to Engineered Nanoparticles due to Potential Adaptation to Oxidative Stress

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 185-198 | Received 27 Jul 2023, Accepted 14 Nov 2023, Published online: 26 Jan 2024

References

  • Fischman M , Murashov V , Borak J , Seward J ; ACOEM Task Force on Nanotechnology and Health . Nanotechnology and health. J. Occup. Environ. Med. 61(3), E95–E98 (2019).
  • Park SG , Kim TJ , Kim HM et al. Novel preparation method of carbon nano fibers/DAAQ electrode for supercapacitor system. Presented at: 2006 IEEE 8th International Conference on Properties & Applications of Dielectric Materials. Bali, Indonesia, 103–106 (2006). https://ieeexplore.ieee.org/document/4062617
  • Vollath D , Fischer FD , Holec D . Surface energy of nanoparticles – influence of particle size and structure. Beilstein J. Nanotechnol. 9, 2265–2276 (2018).
  • Chen LJ , Liu J , Zhang YL et al. The toxicity of silica nanoparticles to the immune system. Nanomedicine 13(15), 1939–1962 (2018).
  • Bayda S , Adeel M , Tuccinardi T , Cordani M , Rizzolio F . The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1), (2020). doi.10.3390/molecules25010112
  • Jakubczyk K , Druzga A , Katarzyna J , Skonieczna-Zydecka K . Antioxidant potential of curcumin – a meta-analysis of randomized clinical trials. Antioxidants 9(11), (2020). doi.10.3390/antiox9111092
  • Pohanka M , Martinkova P , Brtnicky M , Kynicky J . Changes in the oxidative stress/anti-oxidant system after exposure to sulfur mustard and antioxidant strategies in the therapy, a review. Toxicol. Mech. Methods 27(6), 408–416 (2017).
  • Dayem AA , Hossain MK , Lee SB et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Med. Sci. 18(1), (2017). doi:10.3390/ijms18010120
  • Khanna P , Ong C , Bay BH , Baeg GH . Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5(3), 1163–1180 (2015).
  • Giustarini D , Colombo G , Garavaglia ML et al. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic. Biol. Med. 112, 360–375 (2017).
  • Ushio-Fukai M , Ash D , Nagarkoti S , De Chantemele EJB , Fulton DJR , Fukai T . Interplay between reactive oxygen/reactive nitrogen species and metabolism in vascular biology and disease. Antioxid. Redox Signal. 34(16), 1319–1354 (2021).
  • Najahi-Missaoui W , Arnold RD , Cummings BS . Safe nanoparticles: are we there yet? Int. J. Mol. Med. Sci. 22(1), (2021). doi:10.3390/ijms22010385
  • Huang YW , Cambre M , Lee HJ . The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Med. Sci. 18(12), (2017). doi:10.3390/ijms18122702
  • Aggarwal V , Tuli HS , Varol A et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9(11), (2019). doi:10.3390/biom9110735
  • Monteiro HP , Rodrigues EG , Reis AKCA et al. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: a redox signaling perspective. Nitric Oxide Biol. Chem. 89, 1–13 (2019).
  • Mendoza RP , Brown JM . Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr. Opin. Toxicol. 13, 74–80 (2019).
  • Schulte P , Leso V , Niang M , Iavicoli I . Biological monitoring of workers exposed to engineered nanomaterials. Toxicol. Lett. 298, 112–124 (2018).
  • Ghafari J , Moghadasi N , Shekaftik SO . Oxidative stress induced by occupational exposure to nanomaterials: a systematic review. Ind. Health 58(6), 492–502 (2020).
  • Bello D , Chanetsa L , Christophi CA et al. Biomarkers of oxidative stress in urine and plasma of operators at six Singapore printing centers and their association with several metrics of printer-emitted nanoparticle exposures. Nanotoxicology 16(9–10), 913–934 (2022).
  • Aldakheel FM , Thomas PS , Bourke JE , Matheson MC , Dharmage SC , Lowe AJ . Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy 71(6), 741–757 (2016).
  • Horvath I , Barnes PJ , Loukides S et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur. Resp. J. 49(4), (2017). doi:10.1183/13993003.00965-2016
  • Caffarelli C , Calcinai E , Rinaldi L , Dascola CP , Terracciano L , Corradi M . Hydrogen peroxide in exhaled breath condensate in asthmatic children during acute exacerbation and after treatment. Respiration 84(4), 291–298 (2012).
  • Fesen K , Silveyra P , Fuentes N et al. The role of microRNAs in chronic pseudomonas lung infection in cystic fibrosis. Respir. Med. 151, 133–138 (2019).
  • Muccilli V , Saletti R , Cunsolo V et al. Protein profile of exhaled breath condensate determined by high resolution mass spectrometry. J. Pharm. Biomed. Anal. 105, 134–149 (2015).
  • Pelclova D , Zdimal V , Kacer P et al. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J. Breath Res. 10(3), (2016). doi:10.1088/1752-7155/10/3/036004
  • Pelclova D , Zdimal V , Komarc M et al. Three-year study of markers of oxidative stress in exhaled breath condensate in workers producing nanocomposites, extended by plasma and urine analysis in last two years. Nanomaterials 10(12), (2020). doi:10.3390/nano10122440
  • Syslova K , Kacer P , Kuzma M et al. LC–ESI–MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J. Breath Res. 4(1), 017104 (2010).
  • Sotgia S , Fois AG , Paliogiannis P , Carru C , Mangoni AA , Zinellu A . Methodological fallacies in the determination of serum/plasma glutathione limit its translational potential in chronic obstructive pulmonary disease. Molecules 26(6), (2021). doi:10.3390/molecules26061572
  • Benzie IFF , Strain JJ . The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996).
  • Aguilar Diaz de Leon J , Borges CR . Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. (159), 10.3791/61122 (2020).
  • Gaucher C , Boudier A , Bonetti J , Clarot I , Leroy P , Parent M . Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants 7(5), 62 (2018).
  • Young LH , Lin YH , Lin TH et al. Field application of a newly developed personal nanoparticle sampler to selected metal working operations. Aerosol Air Qual. Res. 13(3), 849–861 (2013).
  • Pelclova D , Zdimal V , Schwarz J et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials 8(8), (2018). doi:10.3390/molecules26061572
  • Gould NS , Min E , Gauthier S , Martin RJ , Day BJ . Lung glutathione adaptive responses to cigarette smoke exposure. Respir. Res. 12 (2011). doi:10.1186/1465-9921-12-133
  • Pohanka M , Stetina R , Svobodova H et al. Sulfur mustard causes oxidative stress and depletion of antioxidants in muscles, livers, and kidneys of Wistar rats. Drug Chem. Toxicol. 36(3), 270–276 (2013).
  • Pohanka M , Sobotka J , Jilkova M , Stetina R . Oxidative stress after sulfur mustard intoxication and its reduction by melatonin: efficacy of antioxidant therapy during serious intoxication. Drug Chem. Toxicol. 34(1), 85–91 (2011).
  • Blanco RA , Ziegler TR , Carlson BA et al. Diurnal variation in glutathione and cysteine redox states in human plasmas. Am. J. Clin. Nutr. 86(4), 1016–1023 (2007).
  • Pelclova D , Zdimal V , Kacer P et al. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology 11(1), 52–63 (2017).
  • Rossnerova A , Honkova K , Pelclova D et al. DNA methylation profiles in a group of workers occupationally exposed to nanoparticles. Int. J. Mol. Med. Sci. 21(7), (2020). doi:10.3390/ijms21072420
  • Rossnerova A , Izzotti A , Pulliero A , Bast A , Rattan SIS , Rossner P . The molecular mechanisms of adaptive response related to environmental stress. Int. J. Mol. Med. Sci. 21(19), (2020). doi:10.3390/ijms21197053
  • Rossnerova A , Honkova K , Chvojkova I et al. Individual DNA methylation pattern shifts in nanoparticles-exposed workers analyzed in four consecutive years. Int. J. Mol. Med. Sci. 22(15), (2021). doi:10.3390/ijms21197053
  • Kobal AB , Prezelj M , Horvat M , Krsnik M , Gibicar D , Osredkar J . Glutathione level after long-term occupational elemental mercury exposure. Environ. Res. 107(1), 115–123 (2008).
  • Tahmasbpour E , Emami SR , Ghanei M , Panahi Y . Role of oxidative stress in sulfur mustard-induced pulmonary injury and antioxidant protection. Inhal. Toxicol. 27(13), 659–672 (2015).
  • Staruchova M , Collins AR , Volkovova K et al. Occupational exposure to mineral fibres. Biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair. Mutagenesis 23(4), 249–260 (2008).
  • Cruz Dos Santos RR , Rosa ECC , Gris EF et al. Association between lifestyle and oxidative stress markers in young active men. J. Exercise Physiol. 22(3), 75–86 (2019).
  • Liou SH , Wu WT , Liao HY et al. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 331, 329–335 (2017).
  • Graczyk H , Lewinski N , Zhao JY et al. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study. Part. Fibre Toxicol. 13(1), 31 (2016).
  • Pelclova D , Zdimal V , Fenclova Z et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 73(2), 110–118 (2016).
  • Luo X , Xie D , Hu J , Su J , Xue Z . Oxidative stress and inflammatory biomarkers for populations with occupational exposure to nanomaterials: a systematic review and meta-analysis. Antioxidants 11(11), 2182 (2022).
  • Zhang YP , Bello A , Ryan DK , Demokritou P , Bello D . Elevated urinary biomarkers of oxidative damage in photocopier operators following acute and chronic exposures. Nanomaterials 12(4), (2022). doi:10.3390/nano12040715
  • Fireman E , Edelheit R , Stark M , Bar Shai A . Differential pattern of deposition of nanoparticles in the airways of exposed workers. J. Nanopart. Res. 19(2), (2017). doi:10.1007/s11051-016-3711-8
  • Canu IG , Plys E , Creze CV et al. A harmonized protocol for an international multicenter prospective study of nanotechnology workers: the NanoExplore cohort. Nanotoxicology 17(1), 1–19 (2023).
  • Pelclova D , Fenclova Z , Kacer P , Kuzma M , Navratil T , Lebedova J . Increased 8-isoprostane, a marker of stress in exhaled breath condensate in subjects with asbestos exposure. Ind. Health 46(5), 484–489 (2008).
  • Pelclova D , Fenclova Z , Kacer P et al. 8-isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind. Health 45(6), 766–774 (2007).