103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

B Cell-Targeted Polylactic Acid Nanoparticles as Platform for Encapsulating Jakinibs: Potential Therapeutic Strategy for Systemic Lupus Erythematosus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2001-2019 | Received 31 Aug 2023, Accepted 31 Oct 2023, Published online: 12 Dec 2023

References

  • Wang J , Yang J , Kopeček J . Nanomedicines in B cell-targeting therapies. Acta Biomater. 137, 1–19 (2022).
  • Salles G , Barrett M , Foà R et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv. Ther. 34(10), 2232–2273 (2017).
  • McManigle W , Youssef A , Sarantopoulos S . B cells in chronic graft-versus-host disease. Hum. Immunol. 80(6), 393–399 (2019).
  • Allen CDC . Features of B cell responses relevant to allergic disease. J. Immunol. 208(2), 257–266 (2022).
  • Wu F , Gao J , Kang J et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front. Immunol. 12, 750753–750767 (2021).
  • Comi G , Bar-Or A , Lassmann H et al. Role of B cells in multiple sclerosis and related disorders. Ann. Neurol. 89(1), 13–23 (2021).
  • Nashi E , Wang Y , Diamond B . The role of B cells in lupus pathogenesis. Int. J. Biochem. Cell Biol. 42(4), 543–550 (2010).
  • Parodis I , Gatto M , Sjöwall C . B cells in systemic lupus erythematosus: targets of new therapies and surveillance tools. Front. Med. (Lausanne) 9, 952304 (2022).
  • Yarchoan M , Ho WJ , Mohan A et al. Effects of B cell-activating factor on tumor immunity. JCI Insight 5(10), 1–16 (2020).
  • Chen GM , Melenhorst JJ , Tan K . B cell targeting in CAR T cell therapy: side effect or driver of CAR T cell function? Sci. Transl. Med. 14(650), eabn3353 (2022).
  • Mackensen A , Müller F , Mougiakakos D et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28(10), 2124–2132 (2022).
  • Hendriks RW , Yuvaraj S , Kil LP . Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 14(4), 219–232 (2014).
  • Stark AK , Sriskantharajah S , Hessel EM , Okkenhaug K . PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol. 23, 82–91 (2015).
  • Moura RA , Fonseca JE . JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis. Front. Med. (Lausanne) 7, 607725 (2020).
  • Syeed N . JAK2 and beyond: mutational study of JAK2V617 in myeloproliferative disorders and haematological malignancies in Kashmiri population. Asian Pac. J. Cancer Prev. 20(12), 3611–3615 (2019).
  • Jeong EG , Kim MS , Nam HK et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin. Cancer Res. 14(12), 3716–3721 (2008).
  • Milner JD , Vogel TP , Forbes L et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125(4), 591–599 (2015).
  • Remmers EF , Plenge RM , Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357(10), 977–986 (2007).
  • Bolin K , Sandling JK , Zickert A et al. Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLOS ONE 8(12), e84450 (2013).
  • Beatty GL , Shahda S , Beck T et al. A phase Ib/II study of the JAK1 inhibitor, itacitinib, plus. Oncologist 24(1), 14–e10 (2019).
  • Sanchez GAM , Reinhardt A , Ramsey S et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128(7), 3041–3052 (2018).
  • Schroeder MA , Khoury HJ , Jagasia M et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 4(8), 1656–1669 (2020).
  • Wallace DJ , Furie RA , Tanaka Y et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392(10143), 222–231 (2018).
  • Lee EB , Fleischmann R , Hall S et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370(25), 2377–2386 (2014).
  • O’Shea JJ , Kontzias A , Yamaoka K , Tanaka Y , Laurence A . Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis. 72(Suppl. 2), ii111–115 (2013).
  • Singh AP , Biswas A , Shukla A , Maiti P . Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target Ther. 4, 33 (2019).
  • Aringer M , Costenbader K , Daikh D et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 71(9), 1400–1412 (2019).
  • Squires TM , Mason TG . Fluid mechanics of microrheology. Ann. Rev. Fluid Mech. 42(1), 413–438 (2009).
  • Ansari MJ , Alshahrani SM . Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm. J. 27(4), 491–501 (2019).
  • Echeverri-Cuartas CE , Agudelo NA , Gartner C . Chitosan-PEG-folate-Fe(III) complexes as nanocarriers of epigallocatechin-3-gallate. Int. J. Biol. Macromol. 165(Pt. B), 2909–2919 (2020).
  • Monsalve Carmona Y , Sierra L , Lopez B . Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromol. Symp. 354, 91–98 (2015).
  • Fornaguera C , Solans C . Analytical methods to characterize and purify polymeric nanoparticles. Int. J. Polym. Sci. 2018, 6387826 (2018).
  • Mohanraj VJ , Chen Y . Nanoparticles–a review. Trop. J. Pharm. Res. 5, 561–573 (2007).
  • Danaei M , Dehghankhold M , Ataei S et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 1–17 (2018).
  • Palacio J , Orozco V , Lopez B . Effect of the molecular weight on the physicochemical properties of poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption. J. Braz. Chem. Soc. 22, 2304–2311 (2011).
  • Wilson B , Prud’homme R . Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles. J. Colloid Interface Sci. 604, 208–220 (2021).
  • Singh RR , Saxena V , Zang S et al. Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J. Immunol. 170(9), 4818–4825 (2003).
  • Yu HH , Liu PH , Lin YC et al. Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 19(10), 1219–1228 (2010).
  • Castañeda J , Muñóz-Duarte A , Domínguez-López M , Cruz-López J , Luna-Herrera J . B lymphocyte as a target of bacterial infections. Lymphocyte Updates - Cancer, Autoimmunity Infection 561–573 (2017).
  • Tyler B , Gullotti D , Mangraviti A , Utsuki T , Brem H . Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 107, 163–175 (2016).
  • da Silva D , Kaduri M , Poley M et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 340, 9–14 (2018).
  • Casalini T , Rossi F , Castrovinci A , Perale G . A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 7, 259 (2019).
  • Lee BK , Yun Y , Park K . PLA micro- and nano-particles. Adv. Drug Deliv. Rev. 107, 176–191 (2016).
  • Mahapatro A , Singh DK . Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J. Nanobiotechnol. 9, 55 (2011).
  • Garrós N , Mallandrich M , Beirampour N et al. Baricitinib liposomes as a new approach for the treatment of Sjögren’s syndrome. Pharmaceutics 14(9), 1–20 (2022).
  • Christmann R , Ho DK , Wilzopolski J et al. Tofacitinib loaded squalenyl nanoparticles for targeted follicular delivery in inflammatory skin diseases. Pharmaceutics 12(12), 1–20 (2020).
  • Gorantla S , Saha RN , Singhvi G . Spectrophotometric method to quantify tofacitinib in lyotropic liquid crystalline nanoparticles and skin layers: application in ex vivo dermal distribution studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 255, 119719 (2021).
  • Anwer MK , Ali EA , Iqbal M et al. Development of sustained release baricitinib loaded lipid-polymer hybrid nanoparticles with improved oral bioavailability. Molecules 1–15 (2022).
  • Bashir S , Naaem Aamir M , Sarfaraz R et al. Fabrication, characterization and in vitro release kinetics of tofacitinib-encapsulated polymeric nanoparticles: a promising implication in the treatment of rheumatoid arthritis. Int. J. Polym. Mater. 70, 1–10 (2020).
  • da Luz CM , Boyles MSP , Falagan-Lotsch P et al. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J. Nanobiotechnol. 15(1), 11 (2017).
  • Primard C , Rochereau N , Luciani E et al. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 31(23), 6060–6068 (2010).
  • Peres C , Matos AI , Conniot J et al. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater. 48, 41–57 (2017).
  • Kenny EF , Quinn SR , Doyle SL , Vink PM , van Eenennaam H , O’Neill LA . Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLOS ONE 8(8), e74103 (2013).
  • Rincón-Arévalo H , Burbano C , Atehortúa L et al. Modulation of B cell activation by extracellular vesicles and potential alteration of this pathway in patients with rheumatoid arthritis. Arthritis Res. Ther. 24(1), 169 (2022).
  • Rozovski U , Wu JY , Harris DM et al. Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells. Blood 123(24), 3797–3802 (2014).
  • Ozaki K , Spolski R , Ettinger R et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173(9), 5361–5371 (2004).
  • Zotos D , Coquet JM , Zhang Y et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207(2), 365–378 (2010).
  • Thomas TP , Goonewardena SN , Majoros IJ et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 63(9), 2671–2680 (2011).
  • Look M , Stern E , Wang QA et al. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J. Clin. Invest. 123(4), 1741–1749 (2013).
  • de la Varga Martínez R , Rodríguez-Bayona B , Añez GA et al. Clinical relevance of circulating anti-ENA and anti-dsDNA secreting cells from SLE patients and their dependence on STAT-3 activation. Eur. J. Immunol. 47(7), 1211–1219 (2017).
  • Dörner T , van Vollenhoven RF , Doria A et al. Baricitinib decreases anti-dsDNA in patients with systemic lupus erythematosus: results from a phase II double-blind, randomized, placebo-controlled trial. Arthritis Res. Ther. 24(1), 112 (2022).
  • Wang SP , Iwata S , Nakayamada S , Sakata K , Yamaoka K , Tanaka Y . Tofacitinib, a JAK inhibitor, inhibits human B cell activation in vitro . Ann. Rheum. Dis. 73(12), 2213–2215 (2014).
  • Yamamoto M , Yokoyama Y , Shimizu Y et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod. Rheumatol. 26(4), 633–634 (2016).
  • Charbe NB , Amnerkar ND , Ramesh B et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm. Sin. B 10(11), 2075–2109 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.