188
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticle-Mediated Active and Passive Drug Targeting in Oral Squamous Cell Carcinoma: Current Trends and Advances

ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 2061-2080 | Received 03 Sep 2023, Accepted 21 Nov 2023, Published online: 10 Jan 2024

References

  • Kontos CK . Surrogate prognostic biomarkers in OSCC: the paradigm of PA28γ overexpression. EBioMedicine 2(8), 784–785 (2015).
  • Yang Z , Liang X , Fu Y et al. Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma. EBioMedicine 47, 44–57 (2019).
  • Capik O , Gumus R , Karatas OF . Hypoxia-induced tumor exosomes promote angiogenesis through miR-1825/TSC2/mTOR axis in oral squamous cell carcinoma. Head Neck 45(9), 2259–2273 (2023).
  • Chen SH , Yuan TM , Zhang J et al. Remimazolam tosilate in upper gastrointestinal endoscopy: a multicenter, randomized, non-inferiority, phase III trial. J. Gastroenterol. Hepatol. 36(2), 474–481 (2021).
  • Manikkath J , Jishnu PV , Wich PR , Manikkath A , Radhakrishnan R . Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine 17(3), 181–195 (2022).
  • Yasin MM , Abbas Z , Hafeez A . Correlation of histopathological patterns of OSCC patients with tumor site and habits. BMC Oral Health 22(1), 305 (2022).
  • Ali K . Oral cancer – the fight must go on against all odds. Evid. Based Dent. 23(1), 4–5 (2022).
  • Farooq I , Bugshan A . Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000 Res. 9, 229 (2020).
  • Chi AC , Day TA , Neville BW . Oral cavity and oropharyngeal squamous cell carcinoma – an update. CA Cancer J. Clin. 65(5), 401–421 (2015).
  • Sun J , Tang Q , Yu S et al. F. nucleatum facilitates oral squamous cell carcinoma progression via GLUT1-driven lactate production. EBioMedicine 88, 104444 (2023).
  • Rivera C , Venegas B . Histological and molecular aspects of oral squamous cell carcinoma. Oncol. Lett. 8(1), 7 (2014).
  • Cui S , Liu H , Cui G . Nanoparticles as drug delivery systems in the treatment of oral squamous cell carcinoma: current status and recent progression. Front. Pharmacol. 14, 1176422 (2023).
  • Yang G , Yang Y , Tang H , Yang K . Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Sci. 111(5), 1542–1554 (2020).
  • Shi J , Kantoff PW , Wooster R , Farokhzad OC . Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2016).
  • Cheng Z , Li M , Dey R , Chen Y . Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol. 14(1), 1–27 (2021).
  • Yao Y , Zhou Y , Liu L et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 558493 (2020).
  • Lu Y , Zheng Z , Yuan Y et al. The emerging role of exosomes in oral squamous cell carcinoma. Front. Cell Dev. Biol. 9, 628103 (2021).
  • Bai YT , Zhang XQ , Chen XJ , Zhou G . Nanomedicines in oral cancer: inspiration comes from extracellular vesicles and biomimetic nanoparticles. Nanomedicine 17(23), 1761–1778 (2023).
  • Pires FR , Ramos AB , de Oliveira JBC , Tavares AS , da Luz PSR , dos Santos TCRB . Oral squamous cell carcinoma: clinicopathological features from 346 cases from a single oral pathology service during an 8-year period. J. Appl. Oral Sci. 21(5), 460 (2013).
  • Larsen SR , Johansen J , SØrensen JA , Krogdahl A . The prognostic significance of histological features in oral squamous cell carcinoma. J. Oral Pathol. Med. 38(8), 657–662 (2009).
  • Marocchio LS , Lima J , Sperandio FF , Corrêa L , de Sousa SOM . Oral squamous cell carcinoma: an analysis of 1564 cases showing advances in early detection. J. Oral Sci. 52(2), 267–273 (2010).
  • Lawal AO , Adisa AO , Effiom OA . A review of 640 oral squamous cell carcinoma cases in Nigeria. J. Clin. Exp. Dent. 9(6), e767 (2017).
  • Singh MP , Kumar V , Agarwal A , Kumar R , Bhatt MLB , Misra S . Clinico-epidemiological study of oral squamous cell carcinoma: a tertiary care centre study in North India. J. Oral Biol. Craniofac. Res. 6(1), 31 (2016).
  • Borse V , Konwar AN , Buragohain P . Oral cancer diagnosis and perspectives in India. Sensors Int. 1, 100046 (2020).
  • Deshmukh V , Shekar K . Oral squamous cell carcinoma: diagnosis and treatment planning. Oral Maxillofac. Surg. Clin. 1853–1867 (2021).
  • Kaing L , Manchella S , Love C , Nastri A , Wiesenfeld D . Referral patterns for oral squamous cell carcinoma in Australia: 20 years progress. Aust. Dent. J. 61(1), 29–34 (2016).
  • Tanaka T , Ishigamori R . Understanding carcinogenesis for fighting oral cancer. J. Oncol. 2011, doi:10.1155/2011/603740 (2011).
  • Attia MF , Anton N , Wallyn J , Omran Z , Vandamme TF . An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 71(8), 1185–1198 (2019).
  • Tanaka T , Ishigamori R . Understanding carcinogenesis for fighting oral cancer. J. Oncol. 2011, 603740 (2011).
  • Manikkath J , Sumathy T , Manikkath A , Mutalik S . Delving deeper into dermal and transdermal drug delivery: factors and mechanisms associated with nanocarrier-mediated strategies. Curr. Pharm. Des. 24(27), 3210–3222 (2018).
  • Ding Y , Xu Y , Yang W et al. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today 35, 100970 (2020).
  • Gu FX , Karnik R , Wang AZ et al. Targeted nanoparticles for cancer therapy. Nano Today 2(3), 14–21 (2007).
  • Lee H , Shields AF , Siegel BA et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 23(15), 4190 (2017).
  • Desai DD , Manikkath J , Lad H , Kulkarni M , Manikkath A , Radhakrishnan R . Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomedicine 18(21), 1495–1514 (2023).
  • Manikkath J , Parekh HS , Mutalik S . Surface-engineered nanoliposomes with lipidated and non-lipidated peptide-dendrimeric scaffold for efficient transdermal delivery of a therapeutic agent: development, characterization, toxicological and preclinical performance analyses. Eur. J. Pharm. Biopharm. 156, 97–113 (2020).
  • Mitchell MJ , Billingsley MM , Haley RM , Wechsler ME , Peppas NA , Langer R . Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2020).
  • Singh R , Lillard JW . Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86(3), 215 (2009).
  • Radaic A , Malone E , Kamarajan P , Kapila YL . Solid lipid nanoparticles loaded with nisin (SLN-nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents. J. Biomed. Nanotechnol. 18(4), 1227–1235 (2022).
  • Müller RH , Radtke M , Wissing SA . Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 242(1–2), 121–128 (2002).
  • Felimban RI , Tayeb HH , Chaudhary AG et al. Utilization of a nanostructured lipid carrier encapsulating pitavastatin–Pinus densiflora oil for enhancing cytotoxicity against the gingival carcinoma HGF-1 cell line. Drug Deliv. 30(1), 83–96 (2023).
  • Chaudhari VS , Gawali B , Saha P , Naidu VGM , Murty US , Banerjee S . Quercetin and piperine enriched nanostructured lipid carriers (NLCs) to improve apoptosis in oral squamous cellular carcinoma (FaDu cells) with improved biodistribution profile. Eur. J. Pharmacol. 909, 174400 (2021).
  • El-Hamid ESA , Gamal-Eldeen AM , Sharaf Eldeen AM . Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL-27 cells. Arch. Oral Biol. 103, 47–54 (2019).
  • Wei X-Q . Effect of transferrin-modified liposomal curcumin on proliferation inhibition of oral squamous cell carcinoma (2022). doi:10.21203/rs.3.rs-1632957/v2
  • Hariharan K , Mehta T , Shah J , Dave H , Sami A , Omri A . Localized delivery of erlotinib using liposomal gel formulations for the treatment of oral squamous cell carcinoma. Int. J. Pharm. 642, 123144 (2023).
  • Mabrouk AA , El-Mezayen NS , Tadros MI , El-Gazayerly ON , El-Refaie WM . Novel mucoadhesive celecoxib-loaded cubosomal sponges: anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma. Eur. J. Pharm. Biopharm. 182, 62–80 (2023).
  • Habibi N , Bissonnette C , Pei P et al. Mucopenetrating Janus nanoparticles for field-coverage oral cancer chemoprevention. Pharm. Res. 40(3), 749–764 (2023).
  • Li X , Li L , Huang Y et al. Synergistic therapy of chemotherapeutic drugs and MTH1 inhibitors using a pH-sensitive polymeric delivery system for oral squamous cell carcinoma. Biomater. Sci. 5(10), 2068–2078 (2017).
  • Zhao H , Feng H , Liu D et al. Self-assembling monomeric nucleoside molecular nanoparticles loaded with 5-FU enhancing therapeutic efficacy against oral cancer. ACS Nano 9(10), 9638–9651 (2015).
  • de Souza Ferreira SB , Slowik KM , de Castro Hoshino LV et al. Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: from pre-formulation to cytotoxicity in tissue-engineering oral mucosa. Eur. J. Pharm. Sci. 151, 105372 (2020).
  • Uram Ł , Filipowicz-Rachwał A , Misiorek M , Winiarz A , Wałajtys-Rode E , Wołowiec S . Synthesis and different effects of biotinylated PAMAM G3 dendrimer substituted with nimesulide in human normal fibroblasts and squamous carcinoma cells. Biomolecules 9(9), 437 (2019).
  • Xu L , Kittrell S , Yeudall WA , Yang H . Folic acid-decorated polyamidoamine dendrimer mediates selective uptake and high expression of genes in head and neck cancer cells. Nanomedicine 11(22), 2959–2973 (2016).
  • Ma Y , Liu Y , Wang Y et al. The nanocomposite system comprising folic acid-modified graphene quantum dots loaded with evodiamine in the treatment of oral squamous cell carcinoma. Mater. Des. 220, 110838 (2022).
  • Mousavi SM , Hashemi SA , Ghahramani Y et al. Antiproliferative and apoptotic effects of graphene oxide @AlFu MOF based saponin natural product on OSCC line. Pharmaceuticals 15(9), 1137 (2022).
  • Zur Mühlen A , Schwarz C , Mehnert W . Solid lipid nanoparticles (SLN) for controlled drug delivery – drug release and release mechanism. Eur. J. Pharm. Biopharm. 45(2), 149–155 (1998).
  • Xu L , Wang X , Liu Y , Yang G , Falconer RJ , Zhao C-X . Lipid nanoparticles for drug delivery. Adv. Nanobiomed. Res. 2(2), 2100109 (2022).
  • Bharadwaj R , Sahu BP , Haloi J et al. Combinatorial therapeutic approach for treatment of oral squamous cell carcinoma. Artif. Cells Nanomed. Biotechnol. 47(1), 572–585 (2019).
  • Okazaki S , Yokoyama T , Miyauchi K et al. Early statin treatment in patients with acute coronary syndrome. Circulation 110(9), 1061–1068 (2004).
  • Di Bello E , Zwergel C , Mai A , Valente S . The innovative potential of statins in cancer: new targets for new therapies. Front. Chem. 8, 553677 (2020).
  • Tsubaki M , Fujiwara D , Takeda T et al. The sensitivity of head and neck carcinoma cells to statins is related to the expression of their Ras expression status, and statin-induced apoptosis is mediated via suppression of the Ras/ERK and Ras/mTOR pathways. Clin. Exp. Pharmacol. Physiol. 44(2), 222–234 (2017).
  • Barenholz Y . Doxil®– The first FDA-approved nano-drug: lessons learned. J. Control. Rel. 160(2), 117–134 (2012).
  • Shah S , Famta P , Raghuvanshi RS , Singh SB , Srivastava S . Lipid polymer hybrid nanocarriers: insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloid Interface Sci. Commun. 46, 100570 (2022).
  • Mabrouk AA , El-Mezayen NS , Tadros MI , El-Gazayerly ON , El-Refaie WM . Novel mucoadhesive celecoxib-loaded cubosomal sponges: anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma. Eur. J. Pharm. Biopharm. 182, 62–80 (2023).
  • Liu W , Wang J , Zhang C , Bao Z , Wu L . Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation: a preliminary study. Oral Dis. (2022). doi:10.1111/odi.14271
  • Fernandes AS , de Souza Ferreira SB , de Oliveira MC , Caetano W , Bruschi ML . The influence of different bioadhesive polymers on physicochemical properties of thermoresponsive emulgels containing Amazonian andiroba oil. J. Mol. Liq. 365, 120102 (2022).
  • de Souza Ferreira SB , Slowik KM , de Castro Hoshino LV et al. Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: from pre-formulation to cytotoxicity in tissue-engineering oral mucosa. Eur. J. Pharm. Sci. 151, 105372 (2020).
  • Abdihaji M , Chegeni MM , Hadizadeh A et al. Polyvinyl alcohol (PVA)-based nanoniosome for enhanced in vitro delivery and anticancer activity of thymol. Int. J. Nanomed. 18, 3459–3488 (2023).
  • Motlagh MZ , Mahdavi N , Miri-Lavasani Z et al. Disulfiram-loaded niosomes reduces cancerous phenotypes in oral squamous cell carcinoma cells. Cell J. 25(6), 407 (2023).
  • Fazli B , Irani S , Bardania H , Moosavi MS , Rohani B . Prophylactic effect of topical (slow-release) and systemic curcumin nano-niosome antioxidant on oral cancer in rat. BMC Complement. Med. Ther. 22(1), 109 (2022).
  • Elsaady SA , Aboushelib MN , Al-Wakeel E , Badawi MF . A novel intra-tumoral drug delivery carrier for treatment of oral squamous cell carcinoma. Sci. Rep. 13(1), 11984 (2023).
  • Goldberg M , Manzi A , Conway P et al. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat. Commun. 13(1), 4829 (2022).
  • Rothemund PWK . Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006).
  • Yadav S , Sharma AK , Kumar P . Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol. 8, 500966 (2020).
  • Zhang H , Ji Y , Yuan C et al. Fabrication of astaxanthin-loaded electrospun nanofiber-based mucoadhesive patches with water-insoluble backing for the treatment of oral premalignant lesions. Mater. Des. 223, 111131 (2022).
  • Nam S , Lee SY , Cho HJ . Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. J. Colloid Interface Sci. 508, 112–120 (2017).
  • Geng Q , Wang J , Zhang W , Zhou W , Tang G , Gu M . Oncostatin M receptor is overexpressed in oral squamous cell carcinoma and connected to poor prognosis. J. Oral Pathol. Med. 52(2), 136–144 (2023).
  • Liu X , Qing S , Che K , Li L , Liao X . Androgen receptor promotes oral squamous cell carcinoma cell migration by increasing EGFR phosphorylation. Onco Targets Ther. 12, 4245 (2019).
  • Batelja-Vuletic L , Tomasovic-Loncaric C , Ceppi M et al. Comparison of androgen receptor, VEGF, HIF-1, Ki67 and MMP9 expression between non-metastatic and metastatic stages in stromal and tumor cells of oral squamous cell carcinoma. Life 11(4), 336 (2021).
  • Lin YT , Chuang HC , Chen CH et al. Clinical significance of erythropoietin receptor expression in oral squamous cell carcinoma. BMC Cancer 12(1), 194 (2012).
  • Tarle M , Raguž M , Muller D , Lukšić I . Nuclear epidermal growth factor receptor overexpression as a survival predictor in oral squamous cell carcinoma. Int. J. Mol. Sci. 24(6), 5816 (2023).
  • Magnussen S , Rikardsen OG , Hadler-Olsen E , Uhlin-Hansen L , Steigen SE , Svineng G . Urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) are potential predictive biomarkers in early stage oral squamous cell carcinomas (OSCC). PLOS ONE 9(7), e101895 (2014).
  • Sun JY , Shen J , Thibodeaux J et al. In vivo optical imaging of folate receptor-β in head and neck squamous cell carcinoma. Laryngoscope 124(8), E312–E319 (2014).
  • Egloff AM , Liu X , Davis ALG et al. Elevated gastrin-releasing peptide receptor mRNA expression in buccal mucosa: association with head and neck squamous cell carcinoma. Head Neck 35(2), 270 (2013).
  • Kimura I , Kitahara H , Ooi K et al. Loss of epidermal growth factor receptor expression in oral squamous cell carcinoma is associated with invasiveness and epithelial–mesenchymal transition. Oncol. Lett. 11(1), 201 (2016).
  • Bhattacharya D , Sakhare K , Dhiman C et al. Delivery of chemotherapeutic drug targeting folate receptor to oral cancer cells using functionalized carbon nanospheres. Biomed. Mater. 18(5), 10.1088/1748-605X/ace8de (2023).
  • Bharadwaj R , Medhi S . Effectual nanotherapy against oral squamous cell carcinoma. Drug Dev. Ind. Pharm. 47(5), 711–724 (2021).
  • Li R , Gao R , Wang Y et al. Gastrin releasing peptide receptor targeted nano-graphene oxide for near-infrared fluorescence imaging of oral squamous cell carcinoma. Sci. Rep. 10(1), 11434 (2020).
  • Li R , Liu C , Wan C et al. A targeted and pH-responsive nano-graphene oxide nanoparticle loaded with doxorubicin for synergetic chemo-photothermal therapy of oral squamous cell carcinoma. Int. J. Nanomed. 18, 3309–3324 (2023).
  • Zuo J , Huo M , Wang L , Li J , Chen Y , Xiong P . Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J. Mater. Chem. B 8(39), 9084–9093 (2020).
  • Chen S , Zhao X , Chen J et al. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug. Chem. 21(5), 979 (2010).
  • Abbasi E , Aval SF , Akbarzadeh A et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9(1), 247 (2014).
  • Manikkath J , Hegde AR , Parekh HS , Mutalik S . Peptide dendrimers in delivery of bioactive molecules to skin. In: Nanoscience in Dermatology. Hamblin MR , Avci P , Prow TW ( Eds). Academic Press, MA, USA, 89–97 (2016).
  • Manikkath J , Manikkath A , Shavi GV , Bhat K , Mutalik S . Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen. J. Drug Deliv. Sci. Technol. 41, 334–343 (2017).
  • Shen J , Hu Y , Putt KS et al. Assessment of folate receptor alpha and beta expression in selection of lung and pancreatic cancer patients for receptor targeted therapies. Oncotarget 9(4), 4485–4495 (2018).
  • Sun JY , Shen J , Thibodeaux J et al. In vivo optical imaging of folate receptor-β in head and neck squamous cell carcinoma. Laryngoscope 124(8), E312 (2014).
  • Scaranti M , Cojocaru E , Banerjee S , Banerji U . Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 17(6), 349–359 (2020).
  • Lango MN , Dyer KF , Lui VWY et al. Gastrin-releasing peptide receptor-mediated autocrine growth in squamous cell carcinoma of the head and neck. J. Natl Cancer Inst. 94(5), 375–383 (2002).
  • Linz C , Brands RC , Kertels O et al. Targeting fibroblast activation protein in newly diagnosed squamous cell carcinoma of the oral cavity – initial experience and comparison to [18F]FDG PET/CT and MRI. Eur. J. Nucl. Med. Mol. Imaging 48(12), 3951–3960 (2021).
  • Ma P , Li J , Gao Y et al. Local and systemic delivery of the BimS gene nano-complex for efficient oral squamous cell carcinoma therapy. Int. J. Nanomed. 17, 2925–2941 (2022).
  • Miao L , Liu C , Ge J et al. Antitumor effect of TRAIL on oral squamous cell carcinoma using magnetic nanoparticle-mediated gene expression. Cell Biochem Biophys. 69, 663–672 (2014).
  • Ou L , Sun T , Liu M et al. Efficient miRNA inhibitor delivery with graphene oxide–polyethylenimine to inhibit oral squamous cell carcinoma. Int. J. Nanomed. 15, 1569–1583 (2020).
  • Surekha B , Kommana NS , Dubey SK , Kumar AVP , Shukla R , Kesharwani P . PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf. B Biointerfaces 204, 10.1016/j.colsurfb.2021.111837 (2021).
  • Clemons TD , Singh R , Sorolla A , Chaudhari N , Hubbard A , Iyer KS . Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir 34(50), 15343–15349 (2018).
  • Decuzzi P , Cook AB . Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano 15(2), 2068–2098 (2021).
  • Mura S , Nicolas J , Couvreur P . Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013).
  • Liang J , Yang B , Zhou X , Han Q , Zou J , Cheng L . Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv. 28(1), 272 (2021).
  • Li B , Ding Y , Huo C et al. Targeting circ-OCAC suppress oral squamous cell carcinoma progression. Oral Dis. (2023). doi:10.1111/odi.14687
  • Lo YL , Lin HC , Tseng WH . Tumor pH-functionalized and charge-tunable nanoparticles for the nucleus/cytoplasm-directed delivery of oxaliplatin and miRNA in the treatment of head and neck cancer. Acta Biomater. 153, 465–480 (2022).
  • Zhou ZH , Liang SY , Zhao TC et al. Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J. Nanobiotechnol. 19(1), 157 (2021).
  • Shokrollahi H , Khorramdin A , Isapour G . Magnetic resonance imaging by using nano-magnetic particles. J. Magnetism Magnetic Mater. 369, 176–183 (2014).
  • Wu YN , Yang LX , Shi XY et al. The selective growth inhibition of oral cancer by iron core–gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32(20), 4565–4573 (2011).
  • Zhang S , Li Z , Xu Z et al. Reactive oxygen species-based nanotherapeutics for head and neck squamous cell carcinoma. Mater. Des. 223, 111194 (2022).
  • Zhang Y , Bi L , Hu Z , Cao W , Zhuang D . Hematoporphyrin monomethyl ether-mediated sonodynamic therapy induces A-253 cell apoptosis. Oncol. Lett. 19(4), 3223–3228 (2020).
  • Moosavi Nejad S , Takahashi H , Hosseini H et al. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason. Sonochem. 32, 95–101 (2016).
  • Sun L , Xu Y , Zhang X et al. Mesenchymal stem cells functionalized sonodynamic treatment for improving therapeutic efficacy and compliance of orthotopic oral cancer. Adv. Mater. 32(48), 2005295 (2020).
  • Bilmin K , Kujawska T , Secomski W , Nowicki A , Grieb P . 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro . Folia Neuropathol. 54(3), 234–240 (2016).
  • Lv Y , Zheng J , Zhou Q et al. Antiproliferative and apoptosis-inducing effect of exo-protoporphyrin IX based sonodynamic therapy on human oral squamous cell carcinoma. Sci. Rep. 7(1), 40967 (2017).
  • Fan HY , Zhu ZL , Zhang WL et al. Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur. J. Med. Chem. 199, 112394 (2020).
  • Shalhout SZ , Miller DM , Emerick KS , Kaufman HL . Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20(3), 160–177 (2023).
  • Pol J , Kroemer G , Galluzzi L . First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 5(1), e1115641 (2016).
  • Dolgin E . Oncolytic viruses get a boost with first FDA-approval recommendation. Nat. Rev. Drug Discov. 14(6), 369–371 (2015).
  • Uchihashi T , Nakahara H , Fukuhara H et al. Oncolytic herpes virus G47Δ injected into tongue cancer swiftly traffics in lymphatics and suppresses metastasis. Mol. Ther. Oncolytics 22, 388–398 (2021).
  • Inoue K , Ito H , Iwai M , Tanaka M , Mori Y , Todo T . Neoadjuvant use of oncolytic herpes virus G47Δ prevents local recurrence after insufficient resection in tongue cancer models. Mol. Ther. Oncolytics 30, 72–85 (2023).
  • Zhang CX , Ye LW , Liu Y et al. Antineoplastic activity of Newcastle disease virus strain D90 in oral squamous cell carcinoma. Tumor Biol. 36(9), 7121–7131 (2015).
  • Lu R , Wu G , Chen M et al. USP18 and USP20 restrict oHSV-1 replication in resistant human oral squamous carcinoma cell line SCC9 and affect the viability of SCC9 cells. Mol. Ther. Oncolytics 23, 477–487 (2021).
  • Woo Y , Reid V , Kelly KJ , Carlson D , Yu Z , Fong Y . Oncolytic herpes simplex virus prevents premalignant lesions from progressing to cancer. Mol. Ther. Oncolytics 16, 1–6 (2019).
  • Lee SY , Park HR , Rhee J , Park YM , Kim SH . Therapeutic effect of oncolytic adenovirus expressing relaxin in radioresistant oral squamous cell carcinoma. Oncol. Res. 20(9), 419–425 (2013).
  • Zhang T , Hamada K , Hyodo M et al. Gene therapy for oral squamous cell carcinoma with IAI.3B promoter-driven oncolytic adenovirus-infected carrier cells. Oncol. Rep. 25(3), 795–802 (2011).
  • Saito K , Uzawa K , Kasamatsu A et al. Oncolytic activity of Sindbis virus in human oral squamous carcinoma cells. Br. J. Cancer 101(4), 684–690 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.