60
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Nanomaterials for Neural Applications: Opportunities and Challenges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1979-1994 | Received 14 Sep 2023, Accepted 20 Oct 2023, Published online: 11 Dec 2023

References

  • Kamat PV . Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B106(32), 7729–7744 (2002).
  • Sisubalan N , RamkumarVS , Pugazhendhiet al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ. Sci. Pollut. Res.25(11), 10482–10492 (2018).
  • Rajith Kumar CR , VirupaxappaS , BetageriGet al. Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. J. Sci. Adv. Mater. Dev.5, 48–55 (2020).
  • Vidu R , RahmanM , MahmoudiMet al. Nanostructures: a platform for brain repair and augmentation. Front. Syst. Neurosci.8, 91 (2014).
  • Freitas RA Jr . Nanotechnology, nanomedicine and nanosurgery. Int. J. Surg.3(4), 243–246 (2005).
  • Feynman RP . There’s plenty of room at the bottom (data storage). J. Microelectromech. Syst.1(1), 60–66 (1992).
  • Shabani L , AbbasiM , AzarnewZet al. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed. Eng. Online22(1), 1–41 (2023).
  • Shah S . The nanomaterial toolkit for neuroengineering. Nano Converg.3, 25 (2016).
  • Jamwal D , SharmaA , KanwarRet al. The multifaceted dimensions of potent nanostructures: a comprehensive review. Mater. Chem. Front.5(7), 2967–2995 (2021).
  • Gao W , HuCM , FangRHet al. Liposome-like nanostructures for drug delivery. J. Mater. Chem. B1(48), 6569–6585 (2013).
  • Chenthamara D , SubramaniamS , RamakrishnanSGet al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res.23(1), 1–29 (2019).
  • Pampaloni NP , GiuglianoM , ScainiDet al. Advances in nano neuroscience: from nanomaterials to nanotools. Front. Neurosci.12, 953 (2019).
  • Horner PJ , GageFH. Regenerating the damaged central nervous system. Nature407(6807), 963–970 (2000).
  • Fawcett JW , AsherRA. The glial scar and central nervous system repair. Brain Res. Bull.49(6), 377–391 (1999).
  • Silver J , MillerJH. Regeneration beyond the glial scar. Nat. Rev. Neurosci.5(2), 146–156 (2004).
  • Agrahari V , BurnoufPA , BurnoufTet al. Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev.148, 146–180 (2019).
  • Cascione M , DeMatteis V , LeporattiSet al. The new frontiers in neurodegenerative diseases treatment: liposomal-based strategies. Front. Bioeng. Biotechnol.8, 566767 (2020).
  • Li J , WeiY , ZhangCet al. Cell-membrane-coated nanoparticles for targeted drug delivery to the brain for the treatment of neurological diseases. Pharmaceutics15(2), 621 (2023).
  • Qiao L , ChenY , SongX , DouX , XuC. Selenium nanoparticles-enriched Lactobacillus casei ATCC 393 prevents cognitive dysfunction in mice through modulating microbiota-gut-brain axis. Int. J. Nanomed.17, 4807–4827 (2022).
  • Jang YO , AhnHS , DaoTNet al. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases. Biomater. Res.27(1), 1–9 (2023).
  • Yang J , LulyKM , GreenJJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.15(2), e1853 (2023).
  • Xue L , YeQ , WuLet al. Magneto-mechanical effect of magnetic microhydrogel for improvement of magnetic neuro-stimulation. Nano Res.16, 7393–7404 (2023).
  • Pardo A , Gómez-FloritM , BarbosaSet al. Magnetic nanocomposite hydrogels for tissue engineering: design concepts and remote actuation strategies to control cell fate. ACS Nano15(1), 175–209 (2021).
  • Tay A , KunzeA , MurrayCet al. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano10(2), 2331–2341 (2016).
  • Tay A , SohrabiA , PooleKet al. A 3D magnetic hyaluronic acid hydrogel for magneto-mechanical neuromodulation of primary dorsal root ganglion neurons. Adv. Mater.30(29), 1800927 (2018).
  • Lee JU , ShinW , LimYet al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater.20(7), 1029–1036 (2021).
  • Issa B , ObaidatIM , AlbissBAet al. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci.14(11), 21266–21305 (2013).
  • Xue L , SunJ. Magnetic hydrogels with ordered structure for biomedical applications. Front. Chem.10, 1040492 (2022).
  • Gu N , ZhangZ , LiY. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Res.15, 1–17 (2022).
  • Zhou H , Mayorga-MartinezCC , PanéSet al. Magnetically driven micro and nanorobots. Chem. Rev.121(8), 4999–5041 (2021).
  • Liu H , SunJ , WangHet al. Quantitative evaluation of the total magnetic moments of colloidal magnetic nanoparticles: a kinetics-based method. Chemphyschem16(8), 1598–1602 (2015).
  • Wang H , GeY , SunJet al. Magnetic sensor based on image processing for dynamically tracking magnetic moment of single magnetic mesenchymal stem cell. Biosens. Bioelectron.169, 112593 (2020).
  • Bayat M , ZabihiS , KarbalaeiNet al. Time-dependent effects of platelet-rich plasma on the memory and hippocampal synaptic plasticity impairment in vascular dementia induced by chronic cerebral hypoperfusion. Brain Res. Bull.164, 299–306 (2020).
  • Zhong G , YangZ , JiangT. Precise modulation strategies for transcranial magnetic stimulation: advances and future directions. Neurosci. Bull.37(12), 1718–1734 (2021).
  • Sánchez CC , GarcíaJJ , CabelloMRet al. Design of coils for lateralized TMS on mice. J. Neural Eng.17(3), 036007 (2020).
  • Oliveria SF , RodriguezRL , BowersDet al. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial. Lancet Neurol.16(9), 691–700 (2017).
  • Scangos KW , KhambhatiAN , DalyPMet al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med.27(10), 1696–1700 (2021).
  • Bestmann S , BaudewigJ , SiebnerHRet al. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur. J. Neurosci.19(7), 1950–1962 (2004).
  • Manita S , SuzukiT , InoueMet al. Paired-pulse ratio of synaptically induced transporter currents at hippocampal CA1 synapses is not related to release probability. Brain Res.1154, 71–79 (2007).
  • Lu Q , WuF , JiaoJet al. Selective activation of ABCA1/ApoA1 signaling in the V1 by magnetoelectric stimulation ameliorates depression via regulation of synaptic plasticity. iScience25(5), 104201 (2022).
  • Björklund A , LindvallO. Cell replacement therapies for central nervous system disorders. Nat. Neurosci.3(6), 537–544 (2000).
  • Fry EJ . Central nervous system regeneration: mission impossible?Clin. Exp. Pharmacol. Physiol.28(4), 253–258 (2001).
  • Chawla M , KumarR , SirilPF. High catalytic activities of palladium nanowires synthesized using liquid crystal templating approach. J. Mol. Catal. A Chem.423, 126–134 (2016).
  • Dutt S , KumarR , SirilPF. Green synthesis of a palladium–polyaniline nanocomposite for green Suzuki–Miyaura coupling reactions. RSC Adv.5(43), 33786–33791 (2015).
  • Kumar R , SirilPF , JavidF. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C69, 1335–1344 (2016).
  • Kumar R , SinghA , GargN. Acoustic cavitation-assisted formulation of solid lipid nanoparticles using different stabilizers. ACS Omega4(8), 13360–13370 (2019).
  • Kumar R . Lipid-based nanoparticles for drug-delivery systems. In: Nanocarriers for Drug Delivery. Nanoscience and Nanotechnology in Drug Delivery (1st Edition).MohapatraSS, RanjanS, DasguptaN, MishraRK, ThomasS ( Eds). Elsevier, Amsterdam, Netherlands, 249–284 (2019).
  • Kumar R , SinghA , GargN. Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J. Drug Deliv. Sci. Technol.54, 101277 (2019).
  • Kumar R , SinghA , SharmaKet al. Preparation, characterization and in vitro cytotoxicity of fenofibrate and nabumetone loaded solid lipid nanoparticles. Mater. Sci. Eng. C106, 110184 (2020).
  • Xia Y . Nanomaterials at work in biomedical research. Nat. Mater.7(10), 758–760 (2008).
  • Collazo ER . Repair of stump neuroma using AxoGuard® nerve protector and Avance® nerve graft in the lower extremity. Ortho. Rheum. Open Access J.1(3), 69–70 (2015).
  • Bibbo C , Rodrigues-ColazzoE , FinzenAG. Superficial peroneal nerve to deep peroneal nerve transfer with allograft conduit for neuroma in continuity. J. Foot Ankle Surg.57(3), 514–517 (2018).
  • Silva GA . Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci.7(1), 65–74 (2006).
  • Suh WH , SuslickKS , StuckyGDet al. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol.87(3), 133–170 (2009).
  • Seidlits SK , LeeJY , SchmidtCE. Nanostructured scaffolds for neural applications. Nanomedicine3, 183–199 (2008).
  • Baranes K , ShevachM , ShefiO , DvirT. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett.16(5), 2916–2920 (2016).
  • Cheng Z , YanX , SunXet al. Tumor molecular imaging with nanoparticles. Engineering2(1), 132–140 (2016).
  • Adams JY , JohnsonM , SatoMet al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat. Med.8(8), 891–896 (2002).
  • Massoud TF , GambhirSS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev.17(5), 545–580 (2003).
  • James ML , GambhirSS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev.92(2), 897–965 (2012).
  • Koo H , HuhMS , SunICet al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res.44(10), 1018–1028 (2011).
  • Ullman EF , SchwarzbergM , RubensteinKE. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J. Biol. Chem.251(14), 4172–4178 (1976).
  • Wiwanitkit V . Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Ren. Fail.28(1), 101 (2006).
  • Degani H , Chetrit-DadianiM , BoginL , Furman-HaranE. Magnetic resonance imaging of tumor vasculature. Thromb. Haemost.89(1), 25–33 (2003).
  • Kherlopian AR , SongT , DuanQet al. A review of imaging techniques for systems biology. BMC Syst. Biol.2, 74 (2008).
  • Upputuri PK , SivasubramanianK , MarkCSet al. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed. Res. Int.2015, 783983 (2015).
  • Yun SH , KwokSJ. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng.1, 0008 (2017).
  • Brenner DJ , HallEJ. Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med.357(22), 2277–2284 (2007).
  • Choi W , OhD , KimC. Practical photoacoustic tomography: realistic limitations and technical solutions. J. Appl. Phys.127(23), 230903 (2020).
  • Jo S , SunIC , AhnCHet al. Recent trend of ultrasound-mediated nanoparticle delivery for brain imaging and treatment. ACS Appl. Mater. Interfaces15(1), 120–137 (2022).
  • Kang H , LeeSW , ParkSMet al. Real-time functional optical-resolution photoacoustic microscopy using high-speed alternating illumination at 532 and 1064 nm. J. Biophotonics11(3), e201700210 (2018).
  • Jathoul AP , LauferJ , OgunladeOet al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics9(4), 239–246 (2015).
  • Fan Q , ChengK , YangZet al. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater.27(5), 843–847 (2015).
  • Jiang Y , CuiD , FangYet al. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials145, 168–177 (2017).
  • Zhen X , ZhangJ , HuangJet al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew. Chem.130(26), 7930–7934 (2018).
  • Zhen X , PuK , JiangX. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction. Small17(6), 2004723 (2021).
  • Xu S , DuanY , LiuB. Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv. Mater.32(1), 1903530 (2020).
  • Feng G , ZhangGQ , DingD. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev.49(22), 8179–8234 (2020).
  • Duan Y , HuD , GuoBet al. Nanostructural control enables optimized photoacoustic–fluorescence–magnetic resonance multimodal imaging and photothermal therapy of brain tumor. Adv. Funct. Mater.30(1), 1907077 (2020).
  • Changalvaie B , HanS , MoaseriEet al. Indocyanine green J aggregates in polymersomes for near-infrared photoacoustic imaging. ACS Appl. Mater. Interfaces11(50), 46437–46450 (2019).
  • Wang L , XieS , WangZet al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng.4(2), 159–171 (2020).
  • De La Zerda A , ZavaletaC , KerenSet al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol.3(9), 557–562 (2008).
  • Wu L , WangC , LiY. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine17(21), 1567–1583 (2022).
  • Neuschmelting V , HarmsenS , BeziereNet al. Dual-modality surface-enhanced resonance Raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation. Small14(23), 1800740 (2018).
  • Zhan C , HuangY , LinGet al. A gold nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small15(33), 1900309 (2019).
  • Cai K , ZhangW , Fodaet al. Miniature hollow gold nanorods with enhanced effect for in vivo photoacoustic imaging in the NIR-II window. Small16(37), 2002748 (2020).
  • Li W , ChenX. Gold nanoparticles for photoacoustic imaging. Nanomedicine10(2), 299–320 (2015).
  • Lerouge F , OngE , RositiHet al. In vivo targeting and multimodal imaging of cerebral amyloid-β aggregates using hybrid GdF3 nanoparticles. Nanomedicine17(29), 2173–2187 (2022).
  • Guo B , ChenJ , ChenNet al. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv. Mater.31(25), 1808355 (2019).
  • Jiang Y , UpputuriPK , XieCet al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett.17(8), 4964–4969 (2017).
  • Pu K , ShuhendlerAJ , JokerstJVet al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol.9(3), 233–239 (2014).
  • Lyu Y , FangY , MiaoQet al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano10(4), 4472–4481 (2016).
  • Foulkes R , ManE , ThindJet al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci.8(17), 4653–4664 (2020).
  • Ceña V , JátivaP. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine13(13), 1513–1516 (2018).
  • Steinberg I , HulandDM , VermeshOet al. Photoacoustic clinical imaging. Photoacoustics14, 77–98 (2019).
  • Malar DS , PrasanthMI , BrimsonJMet al. Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s disease: a review. Molecules25(17), 3926 (2020).
  • Tilleux S , HermansE. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res.85(10), 2059–2070 (2007).
  • Zhang W , MehtaA , TongZet al. Development of polymeric nanoparticles for blood–brain barrier transfer – strategies and challenges. Adv. Sci.8(10), 2003937 (2021).
  • Abbott NJ , RönnbäckL , HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci.7(1), 41–53 (2006).
  • Chen Y , LiuL. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev.64(7), 640–665 (2012).
  • Pinheiro RG , CoutinhoAJ , PinheiroMet al. Nanoparticles for targeted brain drug delivery: what do we know? Int. J. Mol. Sci. 22(21), 11654 (2021).
  • Luo Y , YangH , ZhouYFet al. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J. Control. Rel.317, 195–215 (2020).
  • Kassem LM , IbrahimNA , FarhanaAS. Nanoparticle therapy is a promising approach in the management and prevention of many diseases: does it help in curing Alzheimer disease?J. Nanotechnol.2020, 8147080 (2020).
  • Pichla M , BartoszG , Sadowska-BartoszI. The antiaggregative and antiamyloidogenic properties of nanoparticles: a promising tool for the treatment and diagnostics of neurodegenerative diseases. Oxid. Med. Cell. Longev.2020, 3534570 (2020).
  • Lin J , LiH , GuoJet al. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer’s disease. Nanomedicine17(17), 1191–1211 (2022).
  • De Jong WH , BormPJ. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed.3(2), 133–149 (2008).
  • Masserini M . Nanoparticles for brain drug delivery. ISRN Biochem.2013, 238428 (2013).
  • Das S , DowdingJM , KlumpKEet al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine8(9), 1483–1508 (2013).
  • Chapman AP . PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev.54, 531–545 (2002).
  • Lubich C , AllacherP , dela Rosa Met al. The mystery of antibodies against polyethylene glycol (PEG) – what do we know? Pharm. Res. 33, 2239–2249 (2016).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65(1), 36–48 (2013).
  • Mohammadpour R , DobrovolskaiaMA , CheneyDLet al. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug Deliv. Rev.144, 112–132 (2019).
  • Najahi-Missaoui W , ArnoldRD , CummingsBS. Safe nanoparticles: are we there yet?Int. J. Mol. Sci.22(1), 385 (2020).
  • Nemmar A , YuvarajuP , BeegamSet al. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int. J. Nanomed.11, 919–928 (2016).
  • Alshehri R , IlyasAM , HasanAet al. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J. Med. Chem.59(18), 8149–8167 (2016).
  • Duan L , LiX , JiRet al. Nanoparticle-based drug delivery systems: an inspiring therapeutic strategy for neurodegenerative diseases. Polymers (Basel)15(9), 2196 (2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.