790
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluorine-modified polymers reduce the adsorption of immune-reactive proteins to PEGylated gold nanoparticles

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 995-1012 | Received 14 Dec 2023, Accepted 23 Feb 2024, Published online: 09 Apr 2024

References

  • Forgham H, Liu L, Zhu J et al. Vector enabled CRISPR gene editing – a revolutionary strategy for targeting the diversity of brain pathologies. Coord. Chem. Rev. 487, 215172 (2023).
  • Li Z, Zhang X-Q, Ho W et al. Lipid–polymer hybrid ‘particle-in-particle’ nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Adv. Funct. Mater. 32(40), 2204462 (2022).
  • Qiao R, Fu C, Forgham H et al. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 197, 114822 (2023).
  • Yalcin S, Gündüz U. Iron oxide-based polymeric magnetic nanoparticles for drug and gene delivery: in vitro and in vivo applications in cancer. In: Handbook of Polymer and Ceramic Nanotechnology. Hussain CM, Thomas S ( Eds). Springer International Publishing, NY, USA, 1–22 (2021).
  • Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein corona. ACS Nano 11(12), 11773–11776 (2017).
  • Falahati M, Attar F, Sharifi M et al. A health concern regarding the protein corona, aggregation and disaggregation. Biochim. Biophys. Acta Gen. Subj. 1863(5), 971–991 (2019).
  • Yan Y, Gause KT, Kamphuis MMJ et al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7(12), 10960–10970 (2013).
  • Chen F, Wang G, Griffin JI et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12(4), 387–393 (2017).
  • Szebeni J, Storm G, Ljubimova JY et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 17(4), 337–346 (2022).
  • Chanan-Khan A, Szebeni J, Savay S et al. Complement activation following first exposure to PEGylated liposomal doxorubicin (Doxil®): possible role in hypersensitivity reactions. Ann. Oncol. 14(9), 1430–1437 (2003).
  • Lowe S, O'Brien-Simpson NM, Connal LA. Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym. Chem. 6(2), 198–212 (2015).
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug. Deliv. Rev. 99(Pt A), 28–51 (2016).
  • Tao L, Liu J, Xu J, Davis TP. Bio-reversible polyPEGylation. Chem. Commun. (43), 6560–6562 (2009).
  • Papi M, Caputo D, Palmieri V et al. Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale 9(29), 10327–10334 (2017).
  • Du X-J, Wang J-L, Liu W-W et al. Regulating the surface poly (ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 69, 1–11 (2015).
  • Qiao R, Fu C, Li Y et al. Sulfoxide-containing polymer-coated nanoparticles demonstrate minimal protein fouling and improved blood circulation. Adv. Sci. 7(13), 2000406 (2020).
  • Nandakumar A, Wei W, Siddiqui G et al. Dynamic protein corona of gold nanoparticles with an evolving morphology. ACS Appl. Mater. Interfaces 13(48), 58238–58251 (2021).
  • Grundler J, Shin K, Suh H-W, Zhong M, Saltzman WM. Surface topography of polyethylene glycol shell nanoparticles formed from bottlebrush block copolymers controls interactions with proteins and cells. ACS Nano 15(10), 16118–16129 (2021).
  • Chen L, Glass JJ, De Rose R et al. Influence of charge on hemocompatibility and immunoreactivity of polymeric nanoparticles. ACS Appl. Bio Mater. 1(3), 756–767 (2018).
  • Zhang Z, Guan J, Jiang Z et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 10(1), 3561 (2019).
  • Gao Y, Huang Y, Feng S, Gu G, Qing F-L. Novel superhydrophobic and highly oleophobic PFPE-modified silica nanocomposite. J. Mater. Sci. 45(2), 460–466 (2010).
  • Zhang L, Zhou Z, Cheng B, Desimone JM, Samulski ET. Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography. Langmuir 22(20), 8576–8580 (2006).
  • Guo Z, Zhou F, Hao J, Liu W. Effects of system parameters on making aluminum alloy lotus. J. Colloid Interface Sci. 303(1), 298–305 (2006).
  • Banks RE, Smart BE, Tatlow JC. Organofluorine Chemistry. Springer, NY, USA (1994).
  • Miller HA, Kusel BS, Danielson ST et al. Metastable nanostructured metallized fluoropolymer composites for energetics. J. Mater. Chem. A 1(24), 7050–7058 (2013).
  • Messori M, Fabbri P, Pilati F, Tonelli C, Toselli M. Perfluoropolyether-based organic–inorganic coatings. Prog. Org. Coat. 72(3), 461–468 (2011).
  • Wang M, Liu H, Li L, Cheng Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 5(1), 3053 (2014).
  • Gessner A, Waicz R, Lieske A, Paulke B, Mader K, Muller RH. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharm. 196(2), 245–249 (2000).
  • Yang S, Wu Y, Zhong W, Chen R, Wang M, Chen M. GSH/pH dual activatable cross-linked and fluorinated PEI for cancer gene therapy through endogenous iron de-hijacking and in situ ROS amplification. Adv. Mater. 36(2), 2304098 (2024).
  • Ouyang B, Poon W, Zhang Y-N et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19(12), 1362–1371 (2020).
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006).
  • Hammami I, Alabdallah NM, Jomaa AA, Kamoun M. Gold nanoparticles: synthesis properties and applications. J. King Saud Univ. Sci. 33(7), 101560 (2021).
  • Sato Y, Kinami Y, Hashiba K, Harashima H. Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway. J. Control. Rel. 322, 217–226 (2020).
  • Zhang M, Xiong Q, Chen J, Wang Y, Zhang Q. A novel cyclodextrin-containing pH-responsive star polymer for nanostructure fabrication and drug delivery. Polym. Chem. 4(19), 5086–5095 (2013).
  • Zhang Q, Collins J, Anastasaki A et al. Sequence-controlled multi-block glycopolymers to inhibit DC-SIGN-gp120 binding. Angew. Chem. Int. Ed. 52(16), 4435–4439 (2013).
  • Zou Y, Sun X, Yang Q et al. Blood–brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 8(16), eabm8011 (2022).
  • Karim M, Dunham I, Ghoussaini M. Mining a GWAS of severe COVID-19. N. Engl. J. Med. 383(26), 2588–2589 (2020).
  • Van Gisbergen KP, Aarnoudse CA, Meijer GA, Geijtenbeek TB, Van Kooyk Y. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res. 65(13), 5935–5944 (2005).
  • Sethuraman SN, Singh MP, Patil G et al. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity. Theranostics 10(8), 3397–3412 (2020).
  • Obeid M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181(4), 2533–2543 (2008).
  • Huang X, Xu T, Shen A, Davis TP, Qiao R, Tang SY. Engineering polymers via understanding the effect of anchoring groups for highly stable liquid metal nanoparticles. ACS Appl. Nano Mater. 5(5), 5959–5971 (2022).
  • Tan X, Dewapriya P, Prasad P et al. Efficient removal of perfluorinated chemicals from contaminated water sources using magnetic fluorinated polymer sorbents. Angew. Chem. Int. Ed. Engl. 61(49), e202213071 (2022).
  • Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold nanoparticles: synthesis methods, functionalization and biological applications. J. Clust. Sci. 34(2), 705–725 (2023).
  • Stordy B, Zhang YW, Sepahi Z, Khatami MH, Kim PM, Chan WCW. Conjugating ligands to an equilibrated nanoparticle protein corona enables cell targeting in serum. Chem. Mater. 34(15), 6868–6882 (2022).
  • Chang Y, Wang Q, Xu W et al. Low-fouling gold nanorod theranostic agents enabled by a sulfoxide polymer coating. Biomacromolecules 23(9), 3866–3874 (2022).
  • Önal E, Tüncel Ö, Albakour M, Çelik GG, Gürek AG, Özçelik S. Synthesizing and evaluating the photodynamic efficacy of asymmetric heteroleptic A(7)B type novel lanthanide bis-phthalocyanine complexes. RSC Adv. 11(11), 6188–6200 (2021).
  • Qiao R, Esser L, Fu C et al. Bioconjugation and fluorescence labeling of iron oxide nanoparticles grafted with bromomaleimide-terminal polymers. Biomacromolecules 19(11), 4423–4429 (2018).
  • Farkas N, Kramar JA. Dynamic light scattering distributions by any means. J. Nanopart. Res. 23(5), 120 (2021).
  • Wang M, Gustafsson OJR, Siddiqui G et al. Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline). Nanoscale 10(23), 10863–10875 (2018).
  • Ebeling B, Vana P. RAFT-polymers with single and multiple trithiocarbonate groups as uniform gold-nanoparticle coatings. Macromolecules 46(12), 4862–4871 (2013).
  • Brown KR, Walter DG, Natan MJ. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 12(2), 306–313 (2000).
  • Moyano DF, Saha K, Prakash G et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7), 6748–6755 (2014).
  • Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 10(5), 054107 (2016).
  • Linkous A, Balamatsias D, Snuderl M et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 26(12), 3203–3211 e3205 (2019).
  • Strazzullo P, Leclercq C. Sodium. Adv. Nutr. 5(2), 188–190 (2014).
  • Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J. Control. Rel. 235, 337–351 (2016).
  • Givens BE, Wilson E, Fiegel J. The effect of salts in aqueous media on the formation of the BSA corona on SiO2 nanoparticles. Colloids Surf. B Biointerfaces 179, 374–381 (2019).
  • Strojan K, Leonardi A, Bregar VB, Krizaj I, Svete J, Pavlin M. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLOS ONE 12(1), e0169552 (2017).
  • Shih Y-H, Zhuang C-M, Tso C-P, Lin C-H. The effect of electrolytes on the aggregation kinetics of titanium dioxide nanoparticle aggregates. J. Nanopart. Res. 14(8), 924 (2012).
  • Wang X, Yang B, Li L et al. Probing the fluorination effect on the self-assembly characteristics, in vivo fate and antitumor efficacy of paclitaxel prodrug nanoassemblies. Theranostics 11(16), 7896–7910 (2021).
  • Moghimi SM, Simberg D. Critical issues and pitfalls in serum and plasma handling for complement analysis in nanomedicine and bionanotechnology. Nano Today 44, 101479 (2022).
  • Rus H, Cudrici C, Niculescu F. The role of the complement system in innate immunity. Immunol. Res. 33(2), 103–112 (2005).
  • Moghimi SM, Haroon HB, Yaghmur A et al. Perspectives on complement and phagocytic cell responses to nanoparticles: from fundamentals to adverse reactions. J. Control. Rel. 356, 115–129 (2023).
  • Wang Z, Hood ED, Nong J et al. Combating complement's deleterious effects on nanomedicine by conjugating complement regulatory proteins to nanoparticles. Adv. Mater. 34(8), 2107070 (2022).
  • Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8(7), 422–438 (2023).
  • Pisalyaput K, Tenner AJ. Complement component C1q inhibits β-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. J. Neurochem. 104(3), 696–707 (2008).
  • Aoyama M, Hata K, Higashisaka K, Nagano K, Yoshioka Y, Tsutsumi Y. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes. Biochem. Biophys. Res. Commun. 480(4), 690–695 (2016).
  • Dabur M, Loureiro JA, Pereira MC. Fluorinated molecules and nanotechnology: future ‘avengers’ against the Alzheimer's disease? Int. J. Mol. Sci. 21(8), 2989 (2020).
  • Gonzalez-Quintela A, Alende R, Gude F et al. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin. Exp. Immunol. 151(1), 42–50 (2008).
  • Roos A, Bouwman LH, Van Gijlswijk-Janssen DLJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway1. J. Immunol. 167(5), 2861–2868 (2001).
  • Schenkein H, Ruddy S. The role of immunoglobulins in alternative pathway activation by zymosan. II. The effect of IgG on the kinetics of the alternative pathway. J. Immunol. 126(1), 11–15 (1981).
  • Smith NLD, Bromley MJ, Denning DW, Simpson A, Bowyer P. Elevated levels of the neutrophil chemoattractant pro-platelet basic protein in macrophages from individuals with chronic and allergic aspergillosis. J. Infect. Dis. 211(4), 651–660 (2015).
  • Keshavan S, Calligari P, Stella L, Fusco L, Delogu LG, Fadeel B. Nano–bio interactions: a neutrophil-centric view. Cell Death Dis. 10(8), 569 (2019).
  • Kelley WJ, Fromen CA, Lopez-Cazares G, Eniola-Adefeso O. PEGylation of model drug carriers enhances phagocytosis by primary human neutrophils. Acta Biomater. 79, 283–293 (2018).
  • Mak TW, Saunders ME (Eds). Complement. In: The Immune Response. Academic Press, VT, USA, 553–581 (2006).
  • Jang GJ, Jeong JY, Kang J, Cho W, Han SY. Size dependence unveiling the adsorption interaction of high-density lipoprotein particles with PEGylated gold nanoparticles in biomolecular corona formation. Langmuir 37(32), 9755–9763 (2021).
  • Li Z, Zhu J, Wang Y et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J. Pharm. Sci. 15(4), 482–491 (2020).
  • Rojo J, Sousa-Herves A, Mascaraque A. Perspectives of carbohydrates in drug discovery. In: Comprehensive Medicinal Chemistry III. Chackalamannil S, Rotella D, Ward SE ( Eds). Elsevier, Oxford, UK, 577–610 (2017).
  • Garg AD, Elsen S, Krysko DV, Vandenabeele P, De Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 6(29), 26841–26860 (2015).
  • Moyano DF, Goldsmith M, Solfiell DJ et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134(9), 3965–3967 (2012).
  • Yu Q, Zhao L, Guo C, Yan B, Su G. Regulating protein corona formation and dynamic protein exchange by controlling nanoparticle hydrophobicity. Front. Bioeng. Biotechnol. 8, 210 (2020).
  • Huang HY, Chen LQ, Sun W et al. Collagenase IV and clusterin-modified polycaprolactone-polyethylene glycol nanoparticles for penetrating dense tumor tissues. Theranostics 11(2), 906–924 (2021).
  • Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip 23(6), 1432–1466 (2023).