394
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticle Strategies for Enhancing The Sensitivity of Fluorescence-Based Biochips

, , &
Pages 645-656 | Published online: 07 Aug 2009

Bibliography

  • Buechler KF : Near-patient tests: the Triage® system. In: The Immunoassay Handbook (3rd Edition). Wild D (Ed.). Elsevier, Oxford, UK 424–430 (2005).
  • Herron JN , WangHK, TanLet al.: Planar waveguide biosensors for point of care clinical and molecular diagnostics. In: Fluorescence Sensors and Biosensors. Thompson RB (Ed.). CRC Press, FL, USA284–332 (2005).
  • Lewandrowski EL , JanuzziJL, GreenSM, TannousB, WuAHB: Multi-center validation of the Response Biomedical Corporation RAMP®NT-proBNP assay with comparison to the Roche Diagnostics GmbH Elecsys® proBNP assay.Clin. Chim. Acta386, 20–24 (2007).
  • McDonagh C , BurkeCS, MacCraithBD: Optical chemical sensors.Chem. Rev.108(2), 400–422 (2008).
  • Sokolov K , ChumanovG, CottonRM: Enhancement of molecular fluorescence near the surface of colloidal metal films.Anal. Chem.70(18), 3898–3905 (1998).
  • Stich N , GandhumA, MatushinV: Nanofilms and nanoclusters: energy sources driving fluorophores of biochip-bound labels.J. Nanosci. Nanotechnol.1(4), 397–405 (2001).
  • Lakowicz JR , MalickaJ, GryczynskiI: Radiative decay engineering: the role of photonic mode density in biotechnology.Anal. Biochem.36(14), R240–R249 (2003).
  • Stranik O , McEvoyHM, McDonaghC, MacCraithBD: Plasmonic enhancement of fluorescence for sensor applications.Sens. Actuators B.107, 148–153 (2005).
  • Stranik O , NooneyR, McDonaghC, MacCraithBD: Optimisation of nanoparticle size for plasmonic enhancement of fluoresence.Plasmonics2(1), 15–22 (2007).
  • Lakowicz JR , ShenB, GryczynskiI: Intrinsic fluorescence from DNA can be enhanced by metallic particles.Biochem. Biophys. Res. Commun.286, 875–879 (2001).
  • Anger P , BharadwajP, NovotnyL: Enhancement and quenching of single-molecule fluorescence.Phys. Rev. Lett.96, 113002 (2006).
  • Mayer C , StichN, SchalkhammerTet al.: Slide-format proteomic biochip based on surface-enhanced nanocluster-resonance.Fresenius J. Anal. Chem.371, 238–245 (2001).
  • Lakowicz JR , RayK, ChowdhuryMet al.: Plasmo-controlled fluorescence: a new paradigm in fluorescence spectroscopy.Analyst133(10), 1308–1346 (2008).
  • Shipway AN , KatzE, WillnerI: Nanoparticle arrays on surfaces for electronic, optical and sensor applications.Chemphyschem1(1), 18–52 (2000).
  • Kelly KL , CoronadoE, ZhaoLL, SchatzGC: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.J. Phys. Chem. B107(3), 668–677 (2003).
  • Fort E , GresillonS: Surface enhanced fluorescence.J. Phys. D Appl. Phys.41(1), 013001 (2008).
  • Chowdhury MH , RayK, AslanK, LakowiczJR, GeddesCD: Metal enhanced fluorescence of phycobiliproteins from heterogeneous plasmonic nanostructures.J. Phys. Chem. C111(51), 18856–18863 (2007).
  • Zhang J , LakowiczJR: Metal-enhanced fluorescence of an organic fluorophore using gold particles.Opt. Express15(5), 2598–2606 (2007).
  • Matveeva EG , GryczynskiI, BarnettA, LeonenkoZ, LakowiczJR, GryczynskiZ: Metal particle enhanced fluorescent immunoassays on metal mirrors.Anal. Biochem.363(2), 239–245 (2007).
  • Matveeva EG , GryczynskiZ, LakowiczJR: Myoglobin immunoassay based on metal particle enhanced fluorescence.J. Immunol. Methods302(1–2), 26–35 (2005).
  • Lochner N , LobmaierC, WirthM, LeitnerA, PittnerF, GaborF: Silver nanoparticle enhanced immunoassays: one step real time kinetic assay for insulin in serum.Eur. J. Pharm. Biopharm.56(3), 469–477 (2003).
  • Matveeva E , GryczynskiZ, MalikaJ, GryczynskiI, LakowiczJR: Metal enhanced fluorescence immunoassays using total internal reflection and silver island coated surfaces.Anal. Biochem.334(2), 303–311 (2004).
  • Aslan K , GeddesCD: New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures.Analyst133(11), 1469–1480 (2008).
  • Aslan K , GeddesCD: A review of an ultrafast and sensitive bioassay platform technology: microwave accelerated metal-enhanced fluorescence.Plasmonics3(2–3), 89–101 (2008).
  • Stewart ME , AndertonCR, ThompsonLBet al.: Nanostructured plasmonic sensors.Chem. Rev.108(2), 494–521 (2008).
  • Corrigan TD , GuoS, PhaneufRJ, SzmaciniskiH: Enhanced fluorescence from periodic arrays of silver nanoparticles.J. Fluoresc.15(5), 777–784 (2005).
  • Al-Rawashdeh NA , SandrockML, SeuglingCJ: Visible region polarization spectroscopy studies of template synthesized gold nanoparticles orientated in polyethylene.J. Phys. Chem. B102, 361–371 (1998).
  • Ritman-Meer T , CadeNI, RichardsD: Spatial imaging of modifications to fluorescence lifetime and intensity by individual Ag nanoparticles.Appl. Phys. Lett.91, 123122 (2007).
  • Palacin S , HidberPC, Bourgoin J-P, Miramond C, Fermon C, Whitesides GM: Patterning with magnetic materials at the micronscale. Chem. Mater.8(6), 1316–1325 (1996).
  • Coffer JL , BighamSR, PinizzottoRF, YangH: Characterization of quantum-confined CdS nanocrystallites stabilized by deoxyribonuleic acid.Nanotechnology3, 69–76 (1992).
  • Link S , WangZL, El-SayedMA: Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition.J. Phys. Chem. B103(18), 3529–3533 (1999).
  • Turkevich J , StevensonPC, HillierJ: A study of the nucleation and growth processes in the synthesis of colloidal gold.Discuss. Faraday Soc.11, 55–75 (1951).
  • Brown KR , WalterDG, NatanMJ: Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape.Chem. Mater.12(2), 306–313 (2000).
  • Perez-Juste J , Liz-MarzanLM, CarnieS, ChanDYC, MulvaneyP: Electric-field-directed growth of gold nanorods in aqueous surfactant solutions.Adv. Funct. Mater.14, 571–579 (2004).
  • Kou X , ZhangS, TsungCKet al.: One-step synthesis of large aspect ratio single crystalline gold nanorods by using CTPAB and CTBAB surfactants.Chem. Eur. J.13, 2929–2936 (2007).
  • Hu M , WangX, HartlandGV, MulvaneyP, Perez-JusteJ, SaderJE: Vibrational response of nanorods to ultrafst laser induced heating: Theoretical and experimental analysis.J. Am. Chem. Soc.125, 14925–14933 (2003).]
  • Sun YG , XiaYN: Synthesis and characterization of metal nanostructures with hollow interiors.Proc. Soc. Photo Opt. Instrum. Eng.5221, 164–173 (2003).
  • Link S , El-SayedMA: Optical properties and ultrafast dynamics of metallic nanocrystals.Ann. Rev. Phys. Chem.54, 331–366 (2003).
  • Perez-Juste J , Pastoriza-SantosI, Liz-MarzanLM, MulvaneyP: Gold nanorods: synthesis, characterization and applications.Coord. Chem. Rev.249, 1870–2005 (2005).
  • Link S , MohamedMB, El-SayedMA: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.J. Phys. Chem. B103(16), 3073–3077 (1999).
  • Yu YY , ChangSS, LeeCL, WangCRC: Gold nanorods: electrochemical synthesis and optical properties.J. Phys. Chem. B101(34), 6661–6664 (1997).
  • Lee KS , El-SayedMA: Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index.J. Phys. Chem. B109(43), 20331–20338 (2005).
  • Daniel M , AstrucD: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications towards biology, catalysis and nanotechnology.Chem. Rev.104, 293–346 (2004).
  • Nooney RI , StranikO, McDonaghC, MacCraithBD: Optimization of plasmonic enhancement of fluorescence on plastic substrates.Langmuir24, 11261–11267 (2008).
  • Tan Y , LiY, ZhuD: Preparation of silver nanocrystals in the presence of analine.J. Colloid Interface Sci.258(2), 244–251 (2003).
  • Jin R , CaoYC, HaoE, MetrauxGS, SchatzGC, MirkinCA: Controlling anisotropic nanoparticle growth through plasmon excitation.Nature425(2), 487–490 (2003).
  • Chen Y , Chia-JungL: Surface modification on silver nanoparticles for enhancing vapour selectivity of localised surface plasmon resonance sensors.Sens. Actuators B Chem.135, 492–498 (2009).
  • Rindzevicius T , AlaverdyanY, KallM, MurrayWA, BarnesWL: Long-range refractive index sensing using plasmonic nanostructures.J. Phys. Chem. C111(32), 11806–11810 (2007).
  • Schmitt J , DecherG, DressickWJet al.: Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure.Adv. Mater.9, 61–65 (1997).
  • Pan S , RothbergLJ, NolteAJ, RubnerMF, GorodetskayaI, SwagerTM: Plasmon-enhanced conjugated polymer luminescence using silver nanoparticles and sequentially adsorbed polyelectrolyte spacers. In: Plasmonics: Metallic Nanostructures and Their Optical Properties III (Volume 5927). Stockman MI (Ed.). SPIE, Bellingham, WA, USA 592705-1–592705-8 (2005).
  • Ray K , BaduguR, LakowiczJR: Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures.Chem. Mater.19(24), 5902–5909 (2007).
  • Ripken K : Optical constants of Au, Ag and their alloys in energy region from 2.4 to 4.4 eV.Z. Phys.250(3), 228–234 (1972).
  • Ray K , BaduguR, LakowiczJR: Distance-dependent metal-enhanced fluorescence from Langmuir–Blodgett monolayers of alkyl-NBD derivatives on silver island films.Langmuir22, 8374–8378 (2006).
  • Ray K , BaduguR, LakowiczJR: Langmuir–Blodgett monolayers of long-chain NBD derivatives on silver island films: well organized probe layer for the metal enhanced fluorescence studies.J. Phys. Chem. B110, 13499–13507 (2006).
  • Malicka J , GryczynskiI, GryczynskiZ, LakowiczJR: Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides.Anal. Biochem.315(1), 57–66 (2003).
  • Corrigan TD , GuoSH, SzmacinskiH, PhaneufRJ: Systematic study of the size and spacing dependence of Ag nanoparticles enhanced fluorescence using electron-beam lithography.Appl. Phys. Lett.88(10), 101112 (2006).
  • Fu Y , ZhangJ, LakowiczJR: Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle.J. Fluoresc.17(6), 811–816 (2007).
  • Haugland RP : The Handbook – A Guide to Fluorescent Probes and Labelling Technologies. Molecular Probes, Eugene, Oregon, OR, USA (2005).
  • Medintz IL , UyedaHT, GoldmanER, MattoussiH: Quantum dot bioconjugates for imaging labelling and sensing.Nat. Mater.4(6), 435–446 (2005).
  • Pellegrino T , KuderaS, LiedlT, JavierAM, MannaL, ParakWJ: On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications.Small1(1), 48–63 (2005).
  • Zhong WW : Nanomaterials in fluorescence-based biosensing.Anal. Bioanal. Chem.394(1), 47–59 (2009).
  • Burns A , OwH, WiesnerU: Fluorescent core–shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotehcnology.Chem. Soc. Rev.35, 1028–1042 (2006).
  • Santra S , ZhangP, WangKM, TapecR, TanWH: Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers.Anal. Chem.73(20), 4988–4993 (2001).
  • Yao G , WangL, WuYRet al.: FloDots: luminescent nanoparticles.Anal. Bioanal. Chem.385(3), 518–524 (2006).
  • Wang F , TanW, ZhangY, FanX, WangM: Luminescent nanomaterials for biological labelling.Nanotechnology17, R1–R13 (2006).
  • Taylor JR , FangMM, NieSM: Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles.Anal. Chem.72, 1976–1986 (2000).
  • Larson DR , OwH, VishwasraoHD, HeikalAA, WiesnerU, WebbWW: Silicon nanoparticles architecture determines radiative properties of encapsulated fluorophores.Chem. Mater.20(8), 2677–2684 (2008).
  • Stöber W , FinkA, BohnE: Controlled growth of monodispersed silica spheres in micron size range.J. Colloid Interface Sci.26(1), 62–69 (1968).
  • Ow H , LarsonDR, SrivastavaM, BairdBA, WebbWW, WiesnerU: Bright and stable core–shell fluorescent silica nanoparticles.Nano Lett.5(1), 113–117 (2005).
  • Wang L , WangKM, SantraSet al.: Watching silica nanoparticles glow in the biological world.Anal. Chem.78(3), 646–654 (2006).
  • Osseo-Asare K , ArriagadaF: Preparation of SiO2 nanoparticles in a nonionic reverse micellar system.Colloids Surf.50, 321–339 (1990).
  • Lian W , LitherlandSA, BadraneHet al.: Ultrasensitive detection of biomolecules with fluorescent dye doped nanoparticles.Anal. Biochem.334(1), 135–144 (2004).
  • Kim SH , JeakumarM, KatzenellenboJA: Dual-mode fluorophore-doped nickel nitrilotriacetic acid modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labelling.J. Am. Chem. Soc.129(43), 13254–13264 (2007).
  • Qin D , HeX, WangK, ZhaoXJ, TanW, ChenJ: Fluorescent nanoparticle-based indirect immunofluorescence microscopy for detection of mycobacterium tuberculosis.J. Biomed. Biotech.2007(7), 89364 (2007).
  • Wang L , ZhaoWJ, O‘DonoghueMB, TanWH: Fluorescent nanoparticles for multiplexed bacteria monitoring.Bioconj. Chem.18(2), 297–301 (2007).
  • Wang L , TanWH: Multicolor FRET silica nanoparticles by single wavelength excitation.Nano Lett.6(1), 84–88 (2006).
  • Nooney RI , McCaheyCMN, StranikO, GuevelXL, McDonaghC, MacCraithBD: Experimental and theoretical studies of the optimisation of fluorescence from near-infrared dye-doped silica nanoparticles.Anal. Bioanal. Chem.393(4), 1143–1149 (2009).
  • Lakowicz JR : Principles of Fluorescence Spectroscopy (3rd Edition). Springer Science and Buisness Media, NY, USA (2006).
  • Ye Z , TanM, WangG, YuanJ: Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles.Anal. Chem.76(3), 513–518 (2004).
  • Ye ZQ , TanMQ, WangGL, YuanJL: Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay application.Talanta65(1), 206–210 (2005).
  • Corr SA , RakovichYP, Gun‘koYK: Multifunctional magnetic-fluorescent nanocomposites for biomedical applications.Nanoscale Res. Lett.3(3), 87–104 (2008).
  • Tamanaha CR , MulvaneySP, RifeJC, WhitmanLJ: Magnetic labelling, detection and system integration.Biosens. Bioelectron.24, 1–13 (2008).
  • Wang L , YangC, TanW: Dual luminophore-doped silica nanoparticles for multiplexed signalling.Nano Lett.5(1), 37–43 (2005).
  • Kadir A , PreviteMJR, ZhangY, GeddesCD: Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films.Anal. Chem.80(19), 7304–7312 (2008).
  • Toumachenko OG , GrafC, Van den Heuvel DJ, van Blaaderen A, Gerretsen HC: Fluorescence enhancement by metal core/silica shell nanoparticles. Adv. Mater.18, 91–95 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.