599
Views
8
CrossRef citations to date
0
Altmetric
Preliminary Communication

Multifunctional Nanoparticles of Biodegradable Copolymer Blend for Cancer Diagnosis and Treatment

, &
Pages 347-360 | Published online: 16 Apr 2010

Bibliography

  • Chiellini F , PirasAM, ErricoC, ChielliniE: Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications.Nanomedicine (Lond.)3(3), 367–393 (2008).
  • Feng SS : New-concept chemotherapy by nanoparticles of biodegradable polymers: Where are we now?Nanomedicine (Lond.)1(3), 297–309 (2006).
  • Feng SS : Nanoparticles of biodegradable polymers for cancer treatment.Biomaterials29(30), 4146–4147 (2008).
  • Parveen S , SahooSK: Polymeric nanoparticles for cancer therapy.J. Drug Target.16(2), 108–123 (2008).
  • Pridgen EM , LangerR, FarokhzadOC: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy.Nanomedicine (Lond.)2(5), 669–680 (2007).
  • Gref R , LückM, QuellecPet al.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption.Colloids Surf. B Biointerfaces18(3–4), 301–313 (2000).
  • Owens DE 3rd, Peppas NA: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharma.307(1), 93–102 (2006).
  • Feng SS Zhao L, Zhang ZP, Bhakta G, Win KY, Dong YC, Chien S: Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 hours in vivo. Chem. Eng. Sci.62(23), 6641–6648 (2007).
  • Akagi T , KanekoT, KidaT, AkashiM: Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid).J. Biomater. Sci. Polym. Ed.17(8), 875–892 (2006).
  • Ferrari M : Cancer nanotechnology: opportunities and challenges.Nature Rev. Cancer5(3), 161–171 (2005).
  • Gu FX , KarnikR, WangAZet al.: Targeted nanoparticles for cancer therapy.Nano Today2(3), 14–21 (2007).
  • Pan J , FengSS: Targeted delivery of paclitaxel using folate-decorated poly(lactide) - vitamin E TPGS nanoparticles.Biomaterials29(17), 2663–2672 (2008).
  • Sun BFRB , FengSS: Multi-functional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer.Biomaterials29, 475–486 (2008).
  • Zhang ZP , LeeSH, FengSS: Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery.Biomaterials28(10), 1889–1899 (2007).
  • Bagalkot V , ZhangL, Levy-NissenbaumEet al.: Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer.Nano Lett.7(10), 3065–3070 (2007).
  • Kim J , LeeJE, LeeSHet al.: Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery.Adv. Mater.20(3), 478–483 (2008).
  • Alivisatos AP , GuWW, LarabellC: Quantum dots as cellular probes.Annu. Rev. Biomed. Eng.7, 55–76 (2005).
  • Medintz I l, Uyeda HT, Goldman ER, Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6), 435–446 (2005).
  • Michalet X , PinaudFF, BentolilaLAet al.: Quantum dots for live cells, in vivo imaging, and diagnostics.Science307(5709), 538–544 (2005).
  • Smith AM , DuanHW, MohsAM, NieSM: Bioconjugated quantum dots for in vivo molecular and cellular imaging.Adv. Drug Deliv. Rev.60(11), 1226–1240 (2008).
  • Bissery MC , NohynekG, SanderinkGJ, LavelleF: Docetaxel (Taxotere): a review of preclinical and clinical experience. Part I: preclinical experience.Anticancer Drugs6(3), 339–355 (1995).
  • Capri G , TarenziE, FulfaroF, GianniL: The role of taxanes in the treatment of breast cancer. In: Conference on Perspectives in Breast Cancer. Phoenix, AZ, USA (1995).
  • Gueritte-Voegelein F , GuenardD, LavelleF, Le Goff MT, Mangatal L, Potier P: Relationships between the structure of taxol analogs and their antimitotic activity. J. Med. Chem.34(3), 992–998 (1991).
  • Leamon CP , ReddyJA: Folate-targeted chemotherapy.Adv. Drug Deliv. Rev.56(8), 1127–1141 (2004).
  • Lu YJ , LowPS: Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects.J. Control. Release91(1-2), 17–29 (2003).
  • Lu YJ , SegaE, LeamonCP, LowPS: Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential.Adv. Drug Deliv. Rev.56(8), 1161–1176 (2004).
  • Low PS , AntonyAC: Folate receptor-targeted drugs for cancer and inflammatory diseases – preface.Adv. Drug Deliv. Rev.56(8), 1055–1058 (2004).
  • Lu YJ , LowPS: Folate-mediated delivery of macromolecular anticancer therapeutic agents.Adv. Drug Deliv. Rev.54(5), 675–693 (2002).
  • Sudimack J , LeeRJ: Targeted drug delivery via the folate receptor.Adv. Drug Deliv. Rev.41(2), 147–162 (2000).
  • Ross JF , ChaudhuriPK, RatnamM: Differential regulation of folate receptor isoforms in normal and malignant-tissues in vivo and in established cell lines-physiological and clinical implications.Cancer73(9), 2432–2443 (1994).
  • Lee YK : Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting.Macromol. Res.14(3), 387–393 (2006).
  • Park EK , KimSY, LeeSB, LeeYM: Folate-conjugated methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery.J. Control Release109(1–3), 158–168 (2005).
  • Saul JM , AnnapragadaA, NatarajanJV, BellamkondaRV: Controlled targeting of liposomal doxorubicin via the folate receptor in vitro.J. Control. Res.92(1–2), 49–67 (2003).
  • Shmeeda H , MakL, TzemachD, AstrahanP, TarshishM, GabizonA: Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors.Mol. Cancer Ther.5(4), 818–824 (2006).
  • Wu J , LiuQ, LeeRJ: A folate receptor-targeted liposomal formulation for paclitaxel.Int. J. Pharma.316(1–2), 148–153 (2006).
  • Yoo HS , ParkTG: Folate receptor targeted biodegradable polymeric doxorubicin micelles.J. Control Release96(2), 273–283 (2004).
  • Esmaeili F , GhahremaniMH, OstadSNet al.: Folate-receptor-targeted delivery of Docetaxel nanoparticles prepared by PLGA–PEG-folate conjugate.J. Drug Target.16(5), 415–423 (2008).
  • Murugesan S , MishraP, JainNK: Development of folate-conjugated pegylated poly (D,L-lactide-co-glycolide) nanoparticulate carrier for docetaxel.Curr. Nanosci.4, 402–408 (2008).
  • Lee ES , NaK, BaeYH: Polymeric micelle for tumor pH and folate-mediated targeting.J. Control. Release91(1–2), 103–113 (2003).
  • Farokhzad OC , ChengJ, TeplyBAet al.: Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.Proc. Nat Acad. Sci. USA103(16), 6315–6320 (2006).
  • Zhang ZP , FengSS: The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.Biomaterials27(21), 4025–4033 (2006).
  • Mo Y , LimLY: Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin.J. Control Release108(2–3), 244–262 (2005).
  • Mu L , FengSS: Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (taxol®).J. Control Release80(1–3), 129–144 (2002).
  • Pan J , WangY, FengSS: Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging.Biotechnol. Bioeng.101(3), 622–633 (2008).
  • Alivisatos AP : Perspectives on the physical chemistry of semiconductor nanocrystals.J. Phys. Chem.100(31), 13226–13239 (1996).
  • Pan J , FengSS: Targeting and imaging cancer cells by folate-decorated, quantum dots (QDS)-loaded nanoparticles of biodegradable polymers.Biomaterials30, 1176–1183 (2009).
  • Alivisatos P : The use of nanocrystals in biological detection.Nat. Biotechnol.22(1), 47–52 (2004).
  • Michalet X , PinaudF, LacosteTDet al.: Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. In: Les Houches Spring School on Optical Spectroscopy and Microscopy of Single Objects. Les Houches, France (2001).
  • Miyawaki A , SawanoA, KogureT: Lighting up cells: labelling proteins with fluorophores.Nat. Cell Biol.S1–S7 (2003).
  • Niemeyer CM : Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science.Angew. Chem. Int. Ed. Engl.40(22), 4128–4158 (2001).
  • Celik A , ComelekogluU, YalinS: A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis.Toxicol. Ind. Health21(10), 243–248 (2005).
  • Derfus AM , ChanWCW, BhatiaSN: Probing the cytotoxicity of semiconductor quantum dots.Nano Lett.4(1), 11–18 (2004).
  • Kirchner C , LiedlT, KuderaSet al.: Cytotoxicity of colloidal CDSE and CDSE/ZNS nanoparticles.Nano Lett.5(2), 331–338 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.