879
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanomaterials for Regenerative Medicine

, &
Pages 157-181 | Published online: 23 Dec 2010

Bibliography

  • Khademhosseini A , RajalingamB, JinnoS, LangerR: Nanoengineered systems for tissue engineering and regeneration. In: Nanotechnology. Vogel V (Ed.) Wiley-VCG Verlag GmbH and Co., KGaA, Weinheim, Germany (2009).
  • Lee SH , ShinH: Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.Adv. Drug Deliv. Rev.59(4–5), 339–359 (2007).
  • Nie Z , KumachevaE: Patterning surfaces with functional polymers.Nature Mater.7(4), 277–290 (2008).
  • Verma S , GarkhalK, MittalA, KumarN: Biodegradable polymers for emerging clinical use in tissue engineering. In: Biodegradable Polymers in Clinical Use and Clinical Development. Domb A, Kumar N, Azra A (Eds). John Wiley and Sons, NJ, USA (2010) (In press).
  • Chandra R , RustgiR: Biodegradable polymers.Prog. Polym. Sci.23(7), 1273–1335 (1998).
  • Nair LS , LaurencinCT: Biodegradable polymers as biomaterials.Prog. Polym. Sci.32(8–9), 762–798 (2007).
  • Stevens MM : Biomaterials for bone tissue engineering.Mater. Today11(5), 18–25 (2008).
  • MacNeil S : Biomaterials for tissue engineering of skin.Mater. Today11, 26–35 (2008).
  • Ma PX : Biomimetic materials for tissue engineering.Adv. Drug Deliv. Rev.60(2), 184–198 (2008).
  • Fattal E , BarrattG: Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA.Br. J. Pharmacol.157, 179–194 (2009).
  • Gaumet M , GurnyR, DelieF: Fluorescent biodegradable PLGA particles with narrow size distributions: preparation by means of selective centrifugation.Int. J. Pharm.342(1–2), 222–230 (2007).
  • Lee PW , HsuSH, TsaiJSet al.: Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking.Biomaterials31(8), 2425–2434 (2010).
  • Kundu J , ChungYI, KimYH, TaeG, KunduSC: Silk fibroin nanoparticles for cellular uptake and control release.Int. J. Pharm.388(1–2), 242–250 (2010).
  • Pissuwan D , NiidomeT, CortieMB: The forthcoming applications of gold nanoparticles in drug and gene delivery systems.J. Control. Release DOI 10.1016/j.jconrel.2009.12.006 (2009) (Epub ahead of print).
  • Alivisatos AP : Semiconductor clusters, nanocrystals, and quantum dots.Science271, 933–937 (1996).
  • Smith AM , DuanH, MohsAM, NieS: Bioconjugated quantum dots for in vivo molecular and cellular imaging.Adv. Drug Deliv. Rev.60, 1226–1240 (2008).
  • Crouch D , NoragerS, O‘BrienP, ParkJH, PickettN: New synthetic routes for quantum dots.Philos. Transact. A Math. Phys. Eng. Sci. A361, 297–310 (2003).
  • Hild WA , BreunigM, GoepferichA: Quantum dots – nano-sized probes for the exploration of cellular and intracellular targeting.Eur. J. Pharm. Biopharm.68(2), 153–168 (2008).
  • Jose MV , ThomasV, JohnsonKT, DeanDR, NyairoE: Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.Acta Biomater.5(1), 305–315 (2009).
  • Armentano I , DottoriM, FortunatiE, MattioliS, KennyJM: Biodegradable polymer matrix nanocomposites for tissue engineering: a review.Polym. Degrad. Stab.95(11), 2126–2146 (2010).
  • Veiseh O , GunnJW, ZhangM: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging.Adv. Drug Deliv. Rev.62(3), 284–304 (2010).
  • Gupta AK , GuptaM: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials26(18), 3995–4021 (2005).
  • Shubayev VI , PisanicTR 2nd, Jin S: Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev.61(6), 467–477 (2009).
  • Sun C , LeeJS, ZhangM: Magnetic nanoparticles in MR imaging and drug delivery.Adv. Drug Deliv. Rev.60(11), 1252–1265 (2008).
  • Ito A , ShinkaiM, HondaH, KobayashiT: Medical application of functionalized magnetic nanoparticles.J. Biosci. Bioeng.100(1), 1–11 (2005).
  • Dobson J : Magnetic micro- and nano-particle-based targeting for drug and gene delivery.Nanomedicine1(1), 31–37 (2006).
  • Laurent S , ForgeD, PortMet al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.108, 2064–2110 (2008).
  • Shimizu K , ItoA, YoshidaT, YamadaY, UedaM, HondaH: Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.J. Biomed. Mater. Res. Part B App. Biomater.82B(2), 471–480 (2007).
  • Jang JH , CastanoO, KimHW: Electrospun materials as potential platforms for bone tissue engineering.Adv. Drug Deliv. Rev.61(12), 1065–1083 (2009).
  • Li C , VepariC, Jin H-J, Kim HJ, Kaplan DL: Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials27(16), 3115–3124 (2006).
  • Yoo HS , KimTG, ParkTG: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery.Adv. Drug Deliv. Rev.61(12), 1033–1042 (2009).
  • Kim HW , LeeHH, KnowlesJC: Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration.J. Biomed. Mater. Res. A79A, 643–649 (2006).
  • Song JH , KimHE, KimHW: Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration.J. Mater. Sci. Mater. Med.19(8), 2925–2932 (2008).
  • McCullen SD , RamaswamyS, ClarkeLI, GorgaRE: Nanofibrous composites for tissue engineering applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.1(4), 369–390 (2009).
  • Nam YS , ParkTG: Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.J. Biomed. Mater. Res.47, 8–17 (1999).
  • Olivas-Armendariz I , Garcia-CasillasP, Martinez-SanchezR, Martinez-VillafaneA, Martinez-PerezCA: Chitosan/MWCNT composites prepared by thermal induced phase separation.J. Alloys Compd.495(2), 592–595 (2010).
  • Wei G , MaPX: Nanostructured biomaterials for regeneration.Adv. Funct. Mater.18(22), 3568–3582 (2008).
  • Zhang S , GelainF, ZhaoX: Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures.Semin. Cancer Biol.15(5), 413–420 (2005).
  • Zhao X , ZhangS: Self-assembling nanopeptides become a new type of biomaterial.Adv. Polym. Sci.203, 145–170 (2006).
  • Jung JP , NagarajAK, FoxEK, RudraJS, DevgunJM, CollierJH: Co-assembling peptides as defined matrices for endothelial cells.Biomaterials30(12), 2400–2410 (2009).
  • Ying C , LuoY, CheungACYet al.: Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides – a model for biofunctional scaffolds.Biomaterials29(11), 1713–1719 (2008).
  • Zhou M , SmithAM, DasAKet al.: Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.Biomaterials30(13), 2523–2530 (2009).
  • Orbach R , Adler-AbramovichL, ZigersonS, Mironi-HarpazI, SeliktarD, GazitE: Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels.Biomacromolecules10(9), 2646–2651 (2009).
  • Jung JP , JonesJL, CronierSA, CollierJH: Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation.Biomaterials29(13), 2143–2151 (2008).
  • Liao SW , Yu T-B, Guan Z: De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses. J. Am. Chem. Soc.131(48), 17638–17646 (2009).
  • Onaca O , EneaR, HughesDW, MeierW: Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery.Macromol. Biosci.9(2), 129–139 (2009).
  • Christian DA , CaiS, BowenDM, KimY, PajerowskiJD, DischerDE: Polymersome carriers: from self-assembly to siRNA and protein therapeutics.Eur. J. Pharm. Biopharm.71(3), 463–474 (2009).
  • Arifin DR , PalmerAF: Polymersome encapsulated hemoglobin: a novel type of oxygen carrier.Biomacromolecules6(4), 2172–2181 (2005).
  • Katakam M , BellLN, BangaAK: Effect of surfactants on the physical stability of recombinant human growth-hormone.J. Pharm. Sci.84(6), 713–716 (1995).
  • Massignani M , CantonI, SunTet al.: Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes.PLoS One5(5), E10459 (2010).
  • Picard C , HearndenV, MassignaniMet al.: A micro-incubator for cell and tissue imaging.Biotechniques48(2), 135–138 (2010).
  • Hearnden V , BattagliaG, MurdochC, ThornhillM, MacNeilS: Imaging of polymersome penetration into 3D tissue engineered models of oral mucosa and head and neck cancer.Eur. Cells Mater.16(3), 58 (2008).
  • Rajagopal K , ChristianDA, HaradaT, TianA, DischerDE: Polymersomes and wormlike micelles made fluorescent by direct modifications of block copolymer amphiphiles.Int. J. Polym. Sci.2010, 1–10 (2010).
  • Ghoroghchian PP , FrailPR, SusumuKet al.: Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging.Proc Natl Acad. Sci. USA102(8), 2922–2927 (2005).
  • Tran PA , ZhangL, WebsterTJ: Carbon nanofibers and carbon nanotubes in regenerative medicine.Adv. Drug Deliv. Rev.61(12), 1097–1114 (2009).
  • Harrison BS , AtalaA: Carbon nanotube applications for tissue engineering.Biomaterials28(2), 344–353 (2007).
  • Dai H : Carbon nanotubes: Synthesis, integration, and properties.Acc. Chem. Res.35(12), 1035–1044 (2002).
  • Zhang Y , BaiY, YanB: Functionalized carbon nanotubes for potential medicinal applications.Drug Discov. Today15(11–12), 428–435 (2010).
  • Oliveira JM , SalgadoAJ, SousaN, ManoJF, ReisRL: Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies – a review.Prog. Polym. Sci.35(9), 1163–1194 (2010).
  • Calderon M , QuadirMA, SharmaSK, HaagR: Dendritic polyglycerols for biomedical applications.Adv. Mater.22(2), 190–218 (2010).
  • Menjoge AR , KannanRM, TomaliaDA: Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications.Drug Discov. Today15(5–6), 171–185 (2010).
  • Wan AC , YingJY: Nanomaterials for in situ cell delivery and tissue regeneration.Adv. Drug Deliv. Rev.62(7–8), 731–740 (2010).
  • Wong JE , RichteringW: Layer-by-layer assembly on stimuli-responsive microgels.Curr. Opin. Colloid Interface Sci.13403–412 (2008).
  • Takahashi H , NiidomeT, KawanoT, YamadaS, NiidomeY: Surface modification of gold nanorods using layer-by-layer technique for cellular uptake.J. Nanopart. Res.10(1), 221–228 (2008).
  • Yamauchi F , KoyamatsuY, KatoK, IwataH: Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer.Biomaterials27, 3497–3504 (2006).
  • Cai K , RechtenbachA, HaoJ, Bossert Jr, Jandt KD: Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects. Biomaterials26, 5960–5971 (2005).
  • Feng Z , YanF: Preparation and tribological studies of nanocomposite films fabricated using spin-assisted layer-by-layer assembly.Surf. Coat. Tech.202, 3290–3297 (2008).
  • Salditt T , SchubertUS: Layer-by-layer self-assembly of supramolecular and biomolecular films.Rev. Mol. Biotech.90, 55–70 (2002).
  • Wang C , YeW, ZhengY, LiuX, TongZ: Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly.Int. J. Pharm.338, 165–173 (2007).
  • Zhang Z , ZhuY, YangX, LiC: Preparation of azithromycin microcapsules by a layer-by-layer self-assembly approach and release behaviors of azithromycin.Colloids Surf. A Physicochem. Eng. Asp.362, 135–139 (2010).
  • Su PG , LeeCT, ChouCY, ChengKH, ChuangYS: Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties.Sens. Actuators B: Chemical139, 488–493 (2009).
  • Kim JH , KimSH, ShiratoriS: Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor.Sens. Actuators A102, 241–247 (2004).
  • Tang Q , WuJ, LiQ, LinJ: High conducting multilayer films from poly(sodium styrenesulfonate) and graphite nanoplatelets by layer-by-layer self-assembly.Polymer49, 5329–5335 (2008).
  • Tang Q , WuJ, SunX, LiQ, LinJ: Layer-by-layer self-assembly of conducting multilayer film from poly (sodium styrenesulfonate) and polyaniline.J. Coll. Interface Sci.337, 155–161 (2009).
  • Shekaran A , GarciaAJ: Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering.Biochim. Biophys. Acta DOI: 10.1016/j.bbagen.2010.04.006 (2010) (Epub ahead of print).
  • Biggs MJ , RichardsRG, DalbyMJ: Nanotopographical modification: a regulator of cellular function through focal adhesions.Nanomedicine6(5), 619–633 (2010).
  • Huo F , ZhengZ, ZhengG, GiamLR, ZhangH, MirkinCA: Polymer pen lithography.Science321(5896), 1658–1660 (2008).
  • Salaita K , WangY, MirkinCA: Applications of dip-pen nanolithography.Nature Nanotechnol.2(3), 145–155 (2007).
  • Braunschweig AB , HuoF, MirkinCA: Molecular printing.Nature Chem.1, 353–358 (2009).
  • Tormen M , BusinaroL, AltissimoMet al.: 3D patterning by means of nanoimprinting, X-ray and two-photon lithography.Microelectronic Eng.73–74, 535–541 (2004).
  • Liberski AR , ZhangR, BradleyM: In situ nanoliter-scale polymer fabrication for flexible cell patterning.JALA14, 285–293 (2009).
  • Roth EA , XuT, DasM, GregoryC, HickmanJJ, BolandT: Inkjet printing for high-throughput cell patterning.Biomaterials25(17), 3707–3715 (2004).
  • Kim JD , ChoiJS, KimBS, ChoiYC, ChoYW: Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates.Polymer51, 2147–2154 (2010).
  • Sakamoto JH , van de Ven AL, Godin B et al.: Enabling individualized therapy through nanotechnology. Pharmacol. Res.62(2), 57–89 (2010).
  • Solanki A , KimJD, LeeKB: Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging.Nanomedicine3(4), 567–578 (2008).
  • Khang D , CarpenterJ, ChunYW, ParetaR, WebsterTJ: Nanotechnology for regenerative medicine.Biomed. Microdevices12(4), 575–587 (2010).
  • Zhang L , WebsterTJ: Nanotechnology and nanomaterials: promises for improved tissue regeneration.Nano Today4, 66–80 (2009).
  • Engel E , MichiardiA, NavarroM, LacroixD, PlanellJA: Nanotechnology in regenerative medicine: the materials side.Trends Biotechnol.26(1), 39–47 (2008).
  • Sokolsky Papkov M , AgashiK, OlayeA, ShakesheffK, DombAJ: Polymer carriers for drug delivery in tissue engineering.Adv. Drug Deliv. Rev.59(4–5), 187–206 (2007).
  • Willerth SM , Sakiyama-ElbertSE: Approaches to neural tissue engineering using scaffolds for drug delivery.Adv. Drug Deliv. Rev.59(4–5), 325–338 (2007).
  • Yao X , YaoH, LiY, ChenG: Preparation of honeycomb scaffold with hierarchical porous structures by core-crosslinked core-corona nanoparticles.J. Colloid Interface Sci.332(1), 165–172 (2009).
  • Couto DS , HongZ, ManoJF: Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles.Acta Biomater.5(1), 115–123 (2009).
  • Tautzenberger A , LorenzS, KrejaLet al.: Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation.Biomaterials31(8), 2064–2071 (2010).
  • Chao T-I , Xiang S, Chen C-S et al.: Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem. Biophys. Res. Commun.384(4), 426–430 (2009).
  • Kannarkat JT , BattogtokhJ, PhilipJ, WilsonOC, MehlPM: Embedding of magnetic nanoparticles in polycaprolactone nanofiber scaffolds to facilitate bone healing and regeneration.J. Appl. Phys.107(9, Pt 2), 09B307/301–309B307/303 (2010).
  • Kalfa D , BelA, Chen-TournouxAet al.: A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model.Biomaterials31(14), 4056–4063 (2010).
  • Yang F , MuruganR, WangS, RamakrishnaS: Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials26(15), 2603–2610 (2005).
  • Meng J , HanZ, KongHet al.: Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function.J. Biomed. Mater. Res. Part A95A(1), 312–320 (2010).
  • Edwards SL , ChurchJS, WerkmeisterJA, RamshawJA: Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering.Biomaterials30(9), 1725–1731 (2009).
  • Balani K , AndersonR, LahaTet al.: Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro.Biomaterials28(4), 618–624 (2007).
  • Niu L , KuaH, ChuaDHC: Bonelike apatite formation utilizing carbon nanotubes as template.Langmuir26(6), 4069–4073 (2009).
  • Smith-Freshwater AP , BowlinGL, YangH: A novel electrospun dendrimer-gelatin hybrid nanofiber scaffold for tissue regeneration and drug delivery.Mater. Res. Soc. Symp. Proc.1094E, 1094-DD1009–1007 (2008).
  • Duan X , SheardownH: Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.Biomaterials27(26), 4608–4617 (2006).
  • Duan X , McLaughlinC, GriffithM, SheardownH: Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering.Biomaterials28(1), 78–88 (2007).
  • Zhao D , Ong S-M, Yue Z et al.: Dendrimer hydrazides as multivalent transient inter-cellular linkers. Biomaterials29(27), 3693–3702 (2008).
  • Mandoli C , PagliariF, PagliariSet al.: Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine.Adv. Funct. Mater.20(10), 1617–1624 (2010).
  • Verma S , KumarN: Effect of biomimetic 3D environment of an injectable polymeric scaffold on MG-63 osteoblastic-cell response.Mater. Sci. Eng. C30, 1118–1128 (2010).
  • Dalby MJ , McCloyD, RobertsonM, WilkinsonCD, OreffoRO: Osteoprogenitor response to defined topographies with nanoscale depths.Biomaterials27(8), 1306–1315 (2006).
  • Lenhert S , MeierMB, MeyerU, ChiL, WiesmannHP: Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography.Biomaterials26(5), 563–570 (2005).
  • Yim EK , PangSW, LeongKW: Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage.Exp. Cell Res.313(9), 1820–1829 (2007).
  • Yim EK , ReanoRM, PangSW, YeeAF, ChenCS, LeongKW: Nanopattern-induced changes in morphology and motility of smooth muscle cells.Biomaterials26(26), 5405–5413 (2005).
  • Tessmar JK , GopferichAM: Matrices and scaffolds for protein delivery in tissue engineering.Adv. Drug Deliv. Rev.59(4–5), 274–291 (2007).
  • Mercado AE , MaJ, HeX, JabbariE: Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles.J. Control. Release140(2), 148–156 (2009).
  • Bessa PC , MachadoR, NurnbergerSet al.: Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs.J. Control. Release142(3), 312–318 (2010).
  • Oh KS , SongJY, YoonSJ, ParkY, KimD, YukSH: Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart.J. Control. Release146(2), 207–211 (2010).
  • Thomas TP , ShuklaR, KotlyarA, Kukowska-LatalloJ, BakerJR Jr: Dendrimer-based tumor cell targeting of fibroblast growth factor-1. Bioorg. Medic. Chem. Lett.20(2), 700–703 (2010).
  • Park JH , KwonS, NamJOet al.: Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery.J. Control. Release95(3), 579–588 (2004).
  • Bonoiu AC , MahajanSD, DingHet al.: Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons.PNAS106(14), 5546–5550 (2009).
  • Klein S , ZolkO, FrommMF, SchrödlF, NeuhuberW, KryschiC: Functionalized silicon quantum dots tailored for targeted siRNA delivery.Biochem. Biophys. Res. Commun.387(1), 164–168 (2009).
  • Kim Y , TewariM, PajerowskiJDet al.: Polymersome delivery of siRNA and antisense oligonucleotides.J. Control. Release134(2), 132–140 (2009).
  • Liao IC , ChenS, LiuJB, LeongKW: Sustained viral gene delivery through core-shell fibers.J. Control. Release139(1), 48–55 (2009).
  • Lee H , MokH, LeeS, OhYK, ParkTG: Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels.J. Control. Release119(2), 245–252 (2007).
  • Santos JL , OliveiraH, PanditaDet al.: Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells.J. Control. Release144(1), 55–64 (2010).
  • Peng SF , SuCJ, WeiMCet al.: Effects of the nanostructure of dendrimer/DNA complexes on their endocytosis and gene expression.Biomaterials31(21), 5660–5670 (2010).
  • Kim TI , BaekJU, Zhe Bai C, Park JS: Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials28(11), 2061–2067 (2007).
  • Hussain M , ShchepinovM, SohailMet al.: A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides.J. Control. Release99(1), 139–155 (2004).
  • Jewell CM , LynnDM: Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics.Adv. Drug Deliv. Rev.60, 979–999 (2008).
  • Wang F , WangJ, ZhaiY, LiG, LiD, DongS: Layer-by-layer assembly of biologically inert inorganic ions/DNA multilayer films for tunable DNA release by chelation.J. Control. Release132, 65–73 (2008).
  • Sheyn D , MizrahiO, BenjaminS, GazitZ, PelledG, GazitD: Genetically modified cells in regenerative medicine and tissue engineering.Adv. Drug Deliv. Rev.62(7–8), 683–698 (2010).
  • Weissleder R , PittetMJ: Imaging in the era of molecular oncology.Nature452, 580–589 (2008).
  • Fang C , ZhangM: Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine.J. Control. Release146(1), 2–5 (2010).
  • Xie J , LeeS, ChenX: Nanoparticle-based theranostic agents.Adv. Drug Deliv. Rev.62(11), 1064–1079 (2010).
  • Kobayashi H , BrechbielMW: Nano-sized MRI contrast agents with dendrimer cores.Adv. Drug Deliv. Rev.57(15), 2271–2286 (2005).
  • Oliveira JM , KotobukiN, MarquesAPet al.: Surface engineered carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles for intracellular targeting.Adv. Funct. Mater.18(12), 1840–1853 (2008).
  • Tallheden T , NannmarkU, LorentzonMet al.: In vivo MR imaging of magnetically labeled human embryonic stem cells.Life Sci.79(10), 999–1006 (2006).
  • Wang HH , XiangY, WangJet al.: Durable mesenchymal stem cell labeling by using polyhedral superparamagnetic iron oxide nanoparticles.Chemistry15(45), 12417–12425 (2009).
  • Lee PW , HsuSH, WangJJet al.: The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles.Biomaterials31(6), 1316–1324 (2010).
  • Heng BC , CowanCM, DavalianDet al.: Electrostatic binding of nanoparticles to mesenchymal stem cells via high molecular weight polyelectrolyte chains.J. Tissue Eng. Regener. Med.3(4), 243–254 (2009).
  • Willner I , BaronR, WillnerB: Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.Biosens. Bioelectron.22(9–10), 1841–1852 (2007).
  • Vaddiraju S , TomazosI, BurgessDJ, JainFC, PapadimitrakopoulosF: Emerging synergy between nanotechnology and implantable biosensors: a review.Biosens. Bioelectron.25, 1553–1565 (2010).
  • He B , MorrowTJ, KeatingCD: Nanowire sensors for multiplexed detection of biomolecules.Curr. Opin. Chem. Biol.12(5), 522–528 (2008).
  • Roy S , GaoZ: Nanostructure-based electrical biosensors.Nano Today4, 318–334 (2009).
  • Dahint R , TrilevaE, AcunmanHet al.: Optically responsive nanoparticle layers for the label-free analysis of biospecific interactions in array formats.Biosens. Bioelectron.22(12), 3174–3181 (2007).
  • Merkoc ¸i A, Pumera M, Llopis X, Pe´rez B, Valle MD, Alegret S: New materials for electrochemical sensing VI: Carbon nanotubes. Trends Anal. Chem.24(9), 826–838 (2005).
  • Yang M , JiangJ, LuY, HeY, ShenG, YuR: Functional histidine/nickel hexacyanoferrate nanotube assembly for biosensor applications.Biomaterials28(23), 3408–3417 (2007).
  • Li CA , HanKN, Bui M-PN, Pham X-H, Seong GH: Development of hydrogel microstructures on single-walled carbon nanotube films. Appl. Surf. Sci.256, 7428–7433 (2010).
  • Arumugam PU , ChenH, SiddiquiSet al.: Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: a route for development of multiplexed, ultrasensitive disposable biosensors.Biosens. Bioelectron.24(9), 2818–2824 (2009).
  • Hou X , YangF, LiL, SongY, JiangL, ZhuD: A biomimetic asymmetric responsive single nanochannel.J. Am. Chem. Soc.132(33), 11736–11742 (2010).
  • Peng H , ZhangL, SoellerC, Travas-SejdicJ: Conducting polymers for electrochemical DNA sensing.Biomaterials30(11), 2132–2148 (2009).
  • Morel AL , VolmantRM, MethivierC, KrafftJM, BoujdayS, PradierCM: Optimized immobilization of gold nanoparticles on planar surfaces through alkyldithiols and their use to build 3D biosensors.Colloids Surf. B81(1), 304–312 (2010).
  • Park H , ParkTJ, HuhYSet al.: Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms.J. Colloid Interface Sci.350(2), 453–458 (2010).
  • Park M , CellaLN, ChenW, MyungNV, MulchandaniA: Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.Biosens. Bioelectron.26(4), 1297–1301 (2010).
  • Liu Y , ErdmanAG, CuiT: Acetylcholine biosensors based on layer-by-layer self-assembled polymer/nanoparticle ion-sensitive field-effect transistors.Sens. Actuators A136, 540–545 (2007).
  • Medintz IL , ClappAR, MattoussiH, GoldmanER, FisherB, MauroJM: Self-assembled nanoscale biosensors based on quantum dot FRET donors.Nature Mater.2, 630–638 (2003).
  • Medintz IL , StewartMH, TrammellSAet al.: Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing.Nature Mater.9, 676–684 (2010).
  • Rousserie G , SukhanovaA, Even-DesrumeauxKet al.: Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays.Crit. Rev. Oncol. Hematol.74(1), 1–15 (2010).
  • Setti L , Fraleoni-MorgeraA, MencarelliI, FilippiniA, BallarinB, BiaseMD: An HRP-based amperometric biosensor fabricated by thermal inkjet printing.Sens. Actuators B126, 252–257 (2007).
  • Tang Q , ShiSQ: Preparation of gas sensors via dip-pen nanolithography.Sens. Actuators B: Chemical131, 379–383 (2008).
  • Roy D , MunzM, ColombiPet al.: Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography.Appl. Surf. Sci.254, 1394–1398 (2007).
  • Choi HJ , KimNH, ChungBH, SeongGH: Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin.Anal. Biochem.347(1), 60–66 (2005).
  • Montelius L , HeidariB, GraczykM, MaximovI, Sarwe E-L, Ling TGI: Nanoimprint- and UV-lithography: mix&match process for fabrication of interdigitated nanobiosensors. Microelectronic Eng.53, 521–524 (2000).
  • Lee W , ChoiD, LeeY, Kim D-N, Park J, Koh W-G: Preparation of micropatterned hydrogel substrate via surface graft polymerization combined with photolithography for biosensor application. Sens. Actuators A129, 841–849 (2008).
  • Stern ST , McNeilSE: Nanotechnology safety concerns revisited.Toxicol. Sci.101(1), 4–21 (2008).
  • Garnett MC , KallinteriP: Nanomedicines and nanotoxicology: some physiological principles.Occup. Med.56(5), 307–311 (2006).
  • Sahay G , AlakhovaDY, KabanovAV: Endocytosis of nanomedicines.J. Control. Release145(3), 182–195 (2010).
  • Oberdörster G , MaynardA, DonaldsonKet al.: ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group: Principles for characterizing the potential human health effects from exposure to nanomaterial: elements of a screening strategy. Particle Fibre Toxicol.2, 1–35 (2005).
  • Chan VSW : Nanomedicine: an unresolved regulatory issue.Regulatory Tox. Pharmacol.46, 218–224 (2006).
  • Rozenberga BA , TenneR: Polymer-assisted fabrication of nanoparticles and nanocomposites.Prog. Polym. Sci.33, 40–112 (2008).
  • Mazzola L : Commercializing nanotechnology.Nature Biotech.21(10), 1137–1143 (2003).
  • Tan WB , JiangS, ZhangY: Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference.Biomaterials28(8), 1565–1571 (2007).
  • Xu S , PengB, HanX: A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanospheres.Biosens. Bioelectron.22(8), 1807–1810 (2007).
  • Baby TT , RamaprabhuS: SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor.Talanta80(5), 2016–2022 (2010).
  • Li J , WeiX, YuanY: Synthesis of magnetic nanoparticles composed by prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor.Sens. Actuators B: Chemical139(2), 400–406 (2009).
  • Nikitin PI , VetoshkoPM, KsenevichTI: New type of biosensor based on magnetic nanoparticle detection.J. Magnet. Mag. Mater.311, 445–449 (2007).
  • Nejati E , MirzadehH, ZandiM: Synthesis and characterization of nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering.Composites A39A(10), 1589–1596 (2008).
  • Gay S , ArosteguiS, LemaitreJ: Preparation and characterization of dense nanohydroxyapatite/PLLA composites.Mater. Sci. Eng. C29(1), 172–177 (2009).
  • Kong L-J , Ao Q, Xi J et al.: Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds. Shengwu Gongcheng Xuebao23(2), 262–267 (2007).
  • Degirmenbasi N , KalyonDM, BirinciE: Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol).Colloids Surf. B48(1), 42–49 (2006).
  • Lee SH , BaeKH, KimSH, LeeKR, ParkTG: Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers.Int. J. Pharm.364(1), 94–101 (2008).
  • Noh SM , KimWK, KimSJ, KimJM, BaekKH, OhYK: Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles.Biochim. Biophys. Acta1770(5), 747–752 (2007).
  • Persson S , HavtonLA: Retrogradely transported fluorogold accumulates in lysosomes of neurons and is detectable ultrastructurally using post-embedding immuno-gold methods.J. Neurosci. Meth.184(1), 42–47 (2009).
  • Grieshaber P , LagrèzeWA, NoackC, BoehringerD, BiermannJ: Staining of fluorogold-prelabeled retinal ganglion cells with calcein-AM: a new method for assessing cell vitality.J. Neurosci. Meth.192(2), 233–239 (2010).
  • Pettersson J , LobovS, NovikovaLN: Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation.Brain Res. Bull.81(1), 125–132 (2010).
  • Tang L , ZhuY, YangX, LiC: An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film.Anal. Chim. Acta597(1), 145–150 (2007).
  • Liu Y , ZhangD, AlociljaEC, ChakrabarttyS: Biomolecules detection using a silver-enhanced gold nanoparticle-based biochip.Nanoscale Res. Lett.5(3), 533–538 (2010).
  • Tian D , DuanC, WangWet al.: Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification.Talanta78(2), 399–404 (2009).
  • Kim H-W , Song J-H, Kim H-E: Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix. J. Biomed. Mater. Res. Part A79A(3), 698–705 (2006).
  • Arsat R , YuXF, LiYX, WlodarskiW, Kalantar-zadehK: Hydrogen gas sensor based on highly ordered polyaniline nanofibers.Sens. Actuators B: Chemical137(2), 529–532 (2009).
  • Li Z-F , Blum FD, Bertino MF, Kim C-S, Pillalamarri SK: One-step fabrication of a polyaniline nanofiber vapor sensor. Sens. Actuators B: Chemical134(1), 31–35 (2008).
  • Ji S , LiY, YangM: Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline.Sens. Actuators B: Chemical133(2), 644–649 (2008).
  • Krajcik R , JungA, HirschA, NeuhuberW, ZolkO: Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes.Biochem. Biophys. Res. Commun.369(2), 595–602 (2008).
  • Sung J , BaronePW, KongH, StranoMS: Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube fluorescence based micro-capillary implantable sensors.Biomaterials30(4), 622–631 (2009).
  • Zeinali M , JammalanM, ArdestaniSK, MosaveriN: Immunological and cytotoxicological characterization of tuberculin purified protein derivative (PPD) conjugated to single-walled carbon nanotubes.Immunol. Lett.126(1–2), 48–53 (2009).
  • Zheng D , LiX, YeJ: Adsorption and release behavior of bare and DNA-wrapped-carbon nanotubes on self-assembled monolayer surface.Bioelectrochemistry74(2), 240–245 (2009).
  • Awasthi K , SinghDP, SinghSK, DashD, SrivastavaON: Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes.New Carbon Mater.24(4), 301–306 (2009).
  • Xu Z , HuP, WangS, WangX: Biological functionalization and fluorescent imaging of carbon nanotubes.Appl. Surf. Sci.254, 1915–1918 (2008).
  • Wang CH , ChiouSH, ChouCP, ChenYC, HuangYJ, PengCA: Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody.Nanomedicine DOI: 10.1016/j.nano.2010.06.010 (2010) (Epub ahead of print).
  • Arima H , YamashitaS, MoriYet al.: In vitro and in vivo gene delivery mediated by Lactosylated dendrimer/a-cyclodextrin conjugates (G2) into hepatocytes.J. Control. Release146(1), 106–117 (2010).
  • Sato N , ParkCW, KimHSet al.: Synthesis of dendrimer-based biotin radiopharmaceuticals to enhance whole-body clearance.Nucl. Med. Biol.30(6), 617–625 (2003).
  • Kim MH , Kino-okaM, SaitoA, SawaY, TayaM: Myogenic induction of human mesenchymal stem cells by culture on dendrimer-immobilized surface with d-glucose display.J. Biosci. Bioeng.109(1), 55–61 (2010).
  • Oliveira JM , SousaRA, KotobukiNet al.: The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles.Biomaterials30(5), 804–813 (2009).
  • Yao K , ZhuY, YangX, LiC: ENFET glucose biosensor produced with dendrimer encapsulated Pt nanoparticles.Mater. Sci. Eng. C28(8), 1236–1241 (2008).
  • Xu L , ZhuY, YangX, LiC: Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection.Mater. Sci. Eng. C29(4), 1306–1310 (2009).
  • Zhu N , GaoH, XuQ, LinY, SuL, MaoL: Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA.Biosens. Bioelectron.25(6), 1498–1503 (2010).
  • Martinovic J , Wyk Jv, Mapolie S, Jahed N, Baker P, Iwuoha E: Electrochemical and spectroscopic properties of dendritic cobalto-salicylaldiimine DNA biosensor. Electrochim. Acta55(14), 4296–4302 (2010).
  • Zhang P , LiuW: ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging.Biomaterials31(11), 3087–3094 (2010).
  • Fu RH , LiuSP, OuCW, HuangCM, WangYC: Spatial control of cells, peptide delivery and dynamic monitoring of cellular physiology with chitosan-assisted dual color quantum dot FRET peptides.Acta Biomater.6(9), 3621–3629 (2010).
  • Kim JH , KimSH, ShiratoriS: Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor.Sens. Actuators B: Chemical102(2), 241–247 (2004).
  • Kramer MA , ParkHC, IvanisevicA: Dip-pen nanolithography on SiOx and tissue-derived substrates: comparison with multiple biological inks.Scanning32, 30–34 (2010).
  • Zhou H , LiZ, WuA, WeiG, LiuZ: Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography.Appl. Surf. Sci.236(1–4), 18–24 (2004).
  • Wang G-J , Hsu Y-F, Hsu S-H, Horng RH: JSR photolithography based microvessel scaffold fabrication and cell seeding. Biomed. Microdevices8(1), 17–23 (2006).
  • Hsieh TM , Benjamin Ng CW, Narayanan K, Wan AC, Ying JY: Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials31(30), 7648–7652 (2010).
  • Zhang W , Han L-H, Chen S: Integrated two-photon polymerization with nanoimprinting for direct digital nanomanufacturing. J. Manuf. Sci. Eng.132(3), 030907 (2010).
  • Glangchai LC , Caldorera-MooreM, ShiL, RoyK: Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles.J. Control. Release125(3), 263–272 (2008).
  • Ofir Y , MoranIW, SubramaniC, CarterKR, RotelloVM: Nanoimprint lithography for functional three-dimensional patterns.Adv. Mater.22(32), 3608–3614 (2010).
  • Nishiyama Y , NakamuraM, HenmiCet al.: Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.J. Biomech. Eng.131(3), 035001 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.