461
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Nanoparticle Preconditioning for Enhanced Thermal Therapies in Cancer

, , , &
Pages 545-563 | Published online: 04 May 2011

Bibliography

  • Ferrari M : Cancer nanotechnology: opportunities and challenges.Nat. Rev. Cancer5(3), 161–171 (2005).
  • Nie S , XingY, KimGJ, SimonsJW: Nanotechnology applications in cancer.Annu. Rev. Biomed. Eng.9, 257–288 (2007).
  • Xie J , LeeS, ChenX: Nanoparticle-based theranostic agents.Adv. Drug Deliv. Rev.62(11), 1064–1079 (2010).
  • Juzenas P , ChenW, SunYPet al.: Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer.Adv. Drug Deliv. Rev.60(15), 1600–1614 (2008).
  • Cancer Facts and Figures 2009. American Cancer Society, Atlanta, GA, USA (2009).
  • VanSonnenberg E , McMullenW, SolbiatiL: Tumor Ablation: Principles and Practice. Springer, NY, USA (2005).
  • Mulier S , NiY, JamartJ, RuersT, MarchalG, MichelL: Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors.Ann. Surg.242(2), 158–171 (2005).
  • Jones JS , RewcastleJC, DonnellyBJ, LugnaniFM, PistersLL, KatzAE: Whole gland primary prostate cryoablation: initial results from the cryo on-line data registry.J. Urol.180(2), 554–558 (2008).
  • Dewey WC : Arrhenius relationships from the molecule and cell to the clinic.Int. J. Hyperthermia10(4), 457–483 (1994).
  • Gage AA , BaustJG: Cryosurgery for tumors.J. Am. Coll. Surg.205(2), 342–356 (2007).
  • Day ES , MortonJG, WestJL: Nanoparticles for thermal cancer therapy.J. Biomech. Eng.131(7), 074001 (2009).
  • Gilchrist RK , MedalR, ShoreyWD, HanselmanRC, ParrottJC, TaylorCB: Selective inductive heating of lymph nodes.Ann. Surg.146(4), 596–606 (1957).
  • Maier-Hauff K , RotheR, ScholzRet al.: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme.J. Neurooncol.81(1), 53–60 (2007).
  • Johannsen M , GneveckowU, TaymoorianKet al.: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial.Int. J. Hyperthermia23(3), 315–323 (2007).
  • Zharov VP , GalitovskayaEN, JohnsonC, KellyT: Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy.Lasers Surg. Med.37(3), 219–226 (2005).
  • Skrabalak SE , ChenJ, AuL, LuX, LiX, XiaY: Gold nanocages for biomedical applications.Adv. Mater. Deerfield19(20), 3177–3184 (2007).
  • Huang X , El-SayedIH, QianW, El-SayedMA: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J. Am. Chem. Soc.128(6), 2115–2120 (2006).
  • Huang N , WangH, ZhaoJ, LuiH, KorbelikM, ZengH: Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma.Lasers Surg. Med.42(9), 638–648 (2010).
  • von Maltzahn G , ParkJH, AgrawalAet al.: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.Cancer Res.69(9), 3892–3900 (2009).
  • Zhou M , ZhangR, HuangMet al.: A chelator-free multifunctional [(64)Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy.J. Am. Chem. Soc.132(43), 15351–15358 (2010).
  • Hirsch LR , StaffordRJ, BanksonJAet al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl Acad. Sci. USA100(23), 13549–13554 (2003).
  • Curley SA , CherukuriP, BriggsKet al.: Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.J. Exp. Ther. Oncol.7(4), 313–326 (2008).
  • Byrne JD , BncourtT, Brannon-PeppasL: Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.60(15), 1615–1626 (2008).
  • Issels RD : Hyperthermia adds to chemotherapy.Eur. J. Cancer44(17), 2546–2554 (2008).
  • Griffin RJ , OgawaA, WilliamsBW, SongCW: Hyperthermic enhancement of tumor radiosensitization strategies.Immunol. Invest.34(3), 343–359 (2005).
  • Dudar TE , JainRK: Differential response of normal and tumor microcirculation to hyperthermia.Cancer Res.44(2), 605–612 (1984).
  • Koning G , EggermontA, LindnerL, ten Hagen T: Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res.27(8), 1750–1754 (2010).
  • Lin JC , YuanPMK, JungDT: Enhancement of anticancer drug delivery to the brain by microwave induced hyperthermia.Bioelectrochem. Bioenergetics47(2), 259–264 (1998).
  • Franckena M , De Wit R, Ansink AC et al.: Weekly systemic cisplatin plus locoregional hyperthermia: an effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area. Int. J. Hyperthermia23(5), 443–450 (2007).
  • Sneed PK , StaufferPR, McDermottMWet al.: Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme.Int. J. Radiat. Oncol. Biol. Phys.40(2), 287–295 (1998).
  • van der Zee J , GonzalezGD, van Rhoon GC, van Dijk JD, van Putten WL, Hert AA: Comparison of radiotherapy alone with radiotherapy plus hyeprthermia in locally advanced pelvic tumors: a prospective, randomized, multicentre trial. Dutch Deep Hyperthemic Group. Lancet355(9210), 1119–1125 (2000).
  • Colombo R , Da Pozzo LF, Salonia A et al.: Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J. Clin. Oncol.21(23), 4270–4276 (2003).
  • Ponce AM , VujaskovicZ, YuanF, NeedhamD, DewhirstMW: Hyperthermia mediated liposomal drug delivery.Int. J. Hyperthermia22(3), 205–213 (2006).
  • Goldberg SN , KamelIR, KruskalJBet al.: Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy.AJR Am. J. Roentgenol.179(1), 93–101 (2002).
  • Ahmed M , LukyanovAN, TorchilinV, TournierH, SchneiderAN, GoldbergSN: Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time.J. Vasc. Interv. Radiol.16(10), 1365–1371 (2005).
  • Schwerdt A , ZintchenkoA, ConciaMet al.: Hyperthermia-induced targeting of thermosensitive gene carriers to tumors.Hum. Gene Ther.19(11), 1283–1292 (2008).
  • Zhang W , RongJ, WangQ, HeX: The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule.Nanotechnology27, 275101 (2009).
  • Hanna E , QuickJ, LibuttiSK: The tumour microenvironment: a novel target for cancer therapy.Oral Dis.15(1), 8–17 (2009).
  • Jiang J , GoelR, IftekharMAet al.: Tumor necrosis factor-{α}-induced accentuation in cryoinjury: mechanisms in vitro and in vivo.Mol. Cancer Ther.7(8), 2547–2555 (2008).
  • Visaria R , BischofJC, LorenMet al.: Nanotherapeutics for enhancing thermal therapy of cancer.Int. J. Hyperthermia23(6), 501–511 (2007).
  • Visaria RK , GriffinRJ, WilliamsBWet al.: Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-{α} delivery.Mol. Cancer Ther.5(4), 1014–1020 (2006).
  • Libutti SK , PaciottiGF, MyerLet al.: Results of a completed phase I clinical trial of CYT-6091: a PEGylated colloidal gold-TNF nanomedicine.J. Clin. Oncol.27, 15S; (suppl., abstract 3586) (2009).
  • Libutti SK , PaciottiGF, ByrnesAAet al.: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine.Clin. Cancer Res.16(24), 6139–6149 (2010).
  • van Horssen R , Ten Hagen TL, Eggermont AM: TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist11(4), 397–408 (2006).
  • Lin JC , ParkHJ, SongCW: Combined treatment of IL-1 α and TNF-α potentiates the antitumour effect of hyperthermia.Int. J. Hyperthermia12(3), 335–344 (1996).
  • Sun Z , YanJ, RaoW, LiuJ: Particularities of tissue types in treatment planning of nano cryosurgery. In: Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference. Sanya, China, 6–9 January 2008.
  • Shalkevich N , EscherW, BurgiT, MichelB, Si-AhmedL, PoulikakosD: On the thermal conductivity of gold nanoparticle colloids.Langmuir26(2), 663–670 (2009).
  • Goel R , ShahN, VisariaR, PaciottiGF, BischofJC: Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system.Nanomedicine4(4), 401–410 (2009).
  • Perrault SD , WalkeyC, JenningsT, FischerHC, ChanWC: Mediating tumor targeting efficiency of nanoparticles through design.Nano Lett.9(5), 1909–1915 (2009).
  • De Jong WH , HagensWI, KrystekP, BurgerMC, SipsAJ, GeertsmaRE: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.Biomaterials29(12), 1912–1919 (2008).
  • James W , HirschL, WestJ, O‘NealP, PayneJ: Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice.J. Radioanalyt. Nucl. Chem.271(2), 455–459 (2007).
  • Petros RA , DeSimoneJM: Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.9(8), 615–627 (2010).
  • Paciotti GF , MyerL, WeinreichDet al.: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery.Drug Deliv.11(3), 169–183 (2004).
  • Shah NB , DongJ, BischofJC: Cellular uptake and nanoscale localization of gold nanoparticles in cancer using label free Confocal Raman Microscopy.Mol. Pharm.8(1), 176–84 (2010).
  • Pober JS , SessaWC: Evolving functions of endothelial cells in inflammation.Nat. Rev. Immunol.7(10), 803–815 (2007).
  • ten Hagen TL , SeynhaeveAL, EggermontAM: Tumor necrosis factor-mediated interactions between inflammatory response and tumor vascular bed.Immunol. Rev.222, 299–315 (2008).
  • Farma JM , PuhlmannM, SorianoPAet al.: Direct evidence for rapid and selective induction of tumor neovascular permeability by tumor necrosis factor and a novel derivative, colloidal gold bound tumor necrosis factor.Int. J. Cancer120(11), 2474–2480 (2007).
  • Griffin RJ , LeeSH, RoodKLet al.: Use of arsenic trioxide as an antivascular and thermosensitizing agent in solid tumors.Neoplasia2(6), 555–560 (2000).
  • Griffin RJ , MonzenH, WilliamsBW, ParkH, LeeSH, SongCW: Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours.Int. J. Hyperthermia19(6), 575–589 (2003).
  • Griffin RJ , WilliamsBW, BischofJC, OlinM, JohnsonGL, LeeBW: Use of a fluorescently labeled poly-caspase inhibitor for in vivo detection of apoptosis related to vascular-targeting agent arsenic trioxide for cancer therapy.Technol. Cancer Res. Treat.6(6), 651–654 (2007).
  • Hines-Peralta A , SukhatmeV, ReganM, SignorettiS, LiuZJ, GoldbergSN: Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models.Radiology240(1), 82–89 (2006).
  • Hinnen P , EskensFA: Vascular disrupting agents in clinical development.Br. J. Cancer96(8), 1159–1165 (2007).
  • Siemann DW : The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents.Cancer Treat. Rev. (2010) (In press).
  • Shalaby MR , PalladinoMA Jr, Hirabayashi SE et al.: Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-α. J. Leukoc. Biol.41(3), 196–204 (1987).
  • Jiang J , GoelR, SchmechelS, VercellottiG, ForsterC, BischofJ: Pre-conditioning cryosurgery: cellular and molecular mechanisms and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system.Cryobiology61(3), 280–288 (2010).
  • Di Carlo E , ForniG, LolliniP, ColomboMP, ModestiA, MusianiP: The intriguing role of polymorphonuclear neutrophils in antitumor reactions.Blood97(2), 339–345 (2001).
  • Allavena P , SicaA, GarlandaC, MantovaniA: The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance.Immunol. Rev.222, 155–161 (2008).
  • Boon T , CouliePG, Van den Eynde BJ, van der Bruggen P: Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006).
  • Balza E , MortaraL, SassiFet al.: Targeted delivery of tumor necrosis factor-α to tumor vessels induces a therapeutic T cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin.Clin. Cancer Res.12(8), 2575–2582 (2006).
  • Yang JC , HughesM, KammulaUet al.: Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis.J. Immunother.30(8), 825–830 (2007).
  • Lei C , LiuP, ChenBet al.: Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy.J. Am. Chem. Soc.132(20), 6906–6907 (2010).
  • Hoffmann NE , BischofJC: The cryobiology of cryosurgical injury.Urology60(2 Suppl. 1), 40–49 (2002).
  • Nikfarjam M , MuralidharanV, ChristophiC: Mechanisms of focal heat destruction of liver tumors.J. Surg. Res.127(2), 208–223 (2005).
  • Gage AA , BaustJM, BaustJG: Experimental cryosurgery investigations in vivo.Cryobiology59(3), 229–243 (2009).
  • Lepock J : Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage.Int. J. Hyperthermia19(3), 252–266 (2003).
  • Coad JE , KosariK, HumarA, SielaffTD: Radiofrequency ablation causes ‘thermal fixation’ of hepatocellular carcinoma: a post-liver transplant histopathologic study.Clin. Transplant.17(4), 377–384 (2003).
  • Gazzaniga S , BravoA, GoldszmidSet al.: Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice.J. Invest. Dermatol.116(5), 664–671 (2001).
  • Esmon C : The interactions between inflammation and coagulation.Br. J. Haematol.131(4), 417–430 (2005).
  • Sabel MS : Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses.Cryobiology58(1), 1–11 (2009).
  • Skitzki JJ , RepaskyEA, EvansSS: Hyperthermia as an immunotherapy strategy for cancer.Curr. Opin. Investig. Drugs10(6), 550–558 (2009).
  • Gallucci S , LolkemaM, MatzingerP: Natural adjuvants: endogenous activators of dendritic cells.Nat. Med.5(11), 1249–1255 (1999).
  • Shenoi MM , AndersonJK, BischofJC: Nanoparticle enhanced thermal therapies. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. Minneapolis, MN, USA, 3–6 September 2009.
  • Pedro RN , Thekke-AdiyatT, GoelRet al.: Use of tumor necrosis factor-α-coated gold nanoparticles to enhance radiofrequency ablation in a translational model of renal tumors.Urology76(2), 494–498
  • Goel R , SwanlundD, CoadJ, PaciottiGF, BischofJC: TNF-α-based accentuation in cryoinjury – dose, delivery, and response.Mol. Cancer Ther.6(7), 2039–2047 (2007).
  • Jiang J , BischofJ: Effect of timing, dose and interstitial versus nanoparticle delivery of tumor necrosis factor a in combinatorial adjuvant cryosurgery treatment of ELT-3 uterine fibroid tumor.Cryo Lett.31(1), 50–62 (2010).
  • Seshadri M , TothK: Acute vascular disruption by 5,6-dimethylxanthenone-4-acetic acid in an orthotopic model of human head and neck cancer.Transl. Oncol.2(3), 121–127 (2009).
  • Salmon BA , SalmonHW, SiemannDW: Monitoring the treatment efficacy of the vascular disrupting agent CA4P.Eur. J. Cancer43(10), 1622–1629 (2007).
  • Gross S , GammonST, MossBLet al.: Bioluminescence imaging of myeloperoxidase activity in vivo.Nat. Med.15(4), 455–461 (2009).
  • Rodriguez E , NilgesM, WeisslederR, ChenJW: Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity.J. Am. Chem. Soc.132(1), 168–177 (2010).
  • Rubinsky B : Cryosurgery.Annu. Rev. Biomed. Eng.2, 157–187 (2000).
  • Gage AA , BaustJ: Mechanisms of tissue injury in cryosurgery.Cryobiology37(3), 171–186 (1998).
  • Baust JG , GageAA, KlossnerDet al.: Issues critical to the successful application of cryosurgical ablation of the prostate.Technol. Cancer Res. Treat.6(2), 97–109 (2007).
  • Rewcastle JC , SandisonGA, HahnLJ, SalikenJC, McKinnonJG, DonnellyBJ: A model for the time-dependent thermal distribution within an iceball surrounding a cryoprobe.Phys. Med. Biol.43(12), 3519–3534 (1998).
  • Chao BH , HeX, BischofJC: Pre-treatment inflammation induced by TNF-α augments cryosurgical injury on human prostate cancer.Cryobiology49(1), 10–27 (2004).
  • Powell AC , PaciottiGF, LibuttiSK: Colloidal gold: a novel nanoparticle for targeted cancer therapeutics.Methods Mol. Biol.624, 375–384 (2010).
  • Thamm DH , KurzmanID, ClarkMAet al.: Preclinical investigation of PEGylated tumor necrosis factor a in dogs with spontaneous tumors: Phase I evaluation.Clin. Cancer Res.16(5), 1498–1508 (2010).
  • Siemann DW , ChaplinDJ, HorsmanMR: Vascular-targeting therapies for treatment of malignant disease.Cancer100(12), 2491–2499 (2004).
  • Horsman MR , MurataR: Combination of vascular targeting agents with thermal or radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.54(5), 1518–1523 (2002).
  • Murata R , OvergaardJ, HorsmanMR: Potentiation of the anti-tumour effect of hyperthermia by combining with the vascular targeting agent 5,6-dimethylxanthenone-4-acetic acid.Int. J. Hyperthermia17(6), 508–519 (2001).
  • Kumar V , FaustoN, AbbasA: Robbins and Cotran Pathologic Basis of Disease, Seventh Edition. Saunders, PA, USA (2004).
  • Adams R , SchachtrupC, DavalosD, TsigelnyI, AkassoglouK: Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis.Curr. Med. Chem.14(27), 2925–2936 (2007).
  • Pallavicini MG , HillRP: Effect of tumor blood flow manipulations on radiation response.Int. J. Radiat. Oncol. Biol. Phys.9(9), 1321–1325 (1983).
  • Kano MR , BaeY, IwataCet al.: Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling.Proc. Natl Acad. Sci. USA104(9), 3460–3465 (2007).
  • Garay RP , ViensP, BauerJet al.: Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help.Eur. J. Pharmacol.563(1–3), 1–17 (2007).
  • Moschella F , ProiettiE, CaponeI, BelardelliF: Combination strategies for enhancing the efficacy of immunotherapy in cancer patients.Ann. NY Acad. Sci.1194, 169–178 (2010).
  • Bouwhuis MG , SuciuS, TestoriAet al.: Phase III trial comparing adjuvant treatment with PEGylated interferon Alfa-2b versus observation: prognostic significance of autoantibodies – EORTC 18991.J. Clin. Oncol.28(14), 2460–2466 (2010).
  • Agarwala SS , GlaspyJ, O‘DaySJet al.: Results from a randomized Phase III study comparing combined treatment with histamine dihydrochloride plus interleukin-2 versus interleukin-2 alone in patients with metastatic melanoma.J. Clin. Oncol.20(1), 125–133 (2002).
  • Yang JC , TopalianSL, SchwartzentruberDJet al.: The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A Phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2.Cancer76(4), 687–694 (1995).
  • Cocco C , PistoiaV, AiroldiI: New perspectives for melanoma immunotherapy: role of IL-12.Curr. Mol. Med.9(4), 459–469 (2009).
  • Flavell RA , SanjabiS, WrzesinskiSH, Licona-LimonP: The polarization of immune cells in the tumour environment by TGFβ.Nat. Rev. Immunol.10(8), 554–567 (2010).
  • Hennessy EJ , ParkerAE, O‘NeillLA: Targeting Toll-like receptors: emerging therapeutics?Nat. Rev. Drug Discov.9(4), 293–307 (2010).
  • Redondo P , del Olmo J, Lopez-Diaz de Cerio A et al.: Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J. Invest. Dermatol.127(7), 1673–1680 (2007).
  • den Brok MH , SutmullerRP, NierkensSet al.: Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine.Cancer Res.66(14), 7285–7292 (2006).
  • Udagawa M , Kudo-SaitoC, HasegawaGet al.: Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and bacillus Calmette–Guerin cell wall skeleton stimulation.Clin. Cancer Res.12(24), 7465–7475 (2006).
  • Yamanaka R , HommaJ, YajimaNet al.: Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial.Clin. Cancer Res.11(11), 4160–4167 (2005).
  • Cubillos-Ruiz JR , EngleX, ScarlettUKet al.: Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity.J. Clin. Invest.119(8), 2231–2244 (2009).
  • Dominguez AL , LustgartenJ: Targeting the tumor microenvironment with anti-neu/anti-CD40 conjugated nanoparticles for the induction of antitumor immune responses.Vaccine28(5), 1383–1390 (2010).
  • Goel R , PaciottiGF, BischofJC: Tumor necrosis factor-α induced enhancement of cryosurgery.Proceedings SPIE6842, 68420R (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.