1,096
Views
4
CrossRef citations to date
0
Altmetric
Review

Stimuli-Responsive Smart Nanogels for Cancer Diagnostics and Therapy

&
Pages 451-468 | Published online: 16 Apr 2010

Bibliography

  • Kabanov AV , VinogradovSV: Nanogels as pharmaceutical carriers: finite networks of infinite capabilities.Angew. Chem. Int. Ed.48(30), 5418–5429 (2009).
  • Yallapu MM , ReddyMK, LabhasetwarV: Nanogels: chemistry to drug delivery. In: Biomedical Applications Nanotechnology. Labhasetwar V, Diandra LL-P (Eds). John Wiley & Sons, Inc., New York, USA, 131–171 (2007).
  • Morimoto N , HasegawaU, SugawaraA, YamaneS, AkiyoshiK: Polysaccharide nanogel engineering: design of nanostructured hydrogel materials and application to biotechnology and medicine. In: Nanotechnology in Carbohydrate Chemistry. Yuasa H (Ed.). Transworld Research Network, 67–87 (2006).
  • Vinogradov SV , BronichTK, KabanovAV: Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells.Adv. Drug Deliv. Rev.54(1), 135–147 (2002).
  • Bronich TK , BonthaS, ShlyakhtenkoLS, BrombergL, HattonTA, KabanovAV: Template-assisted synthesis of nanogels from Pluronic-modified poly(acrylic acid).J. Drug Target.14(6), 357–366 (2006).
  • Bontha S , KabanovAV, BronichTK: Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs.J. Control. Release114(2), 163–174 (2006).
  • Bronich TK , KeiferPA, ShlyakhtenkoLS, KabanovAV: Polymer micelle with cross-linked ionic core.J. Am. Chem. Soc.127(23), 8236–8237 (2005).
  • Matsumura Y , MaedaH: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Res.46(12), 6387–6392 (1986).
  • Gerweck LE , SeetharamanK: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer.Cancer Res.56(6), 1194–1198 (1996).
  • Wike-Hooley JL , HavemanJ, ReinholdHS: The relevance of tumour pH to the treatment of malignant disease.Radiother. Oncol.2(4), 343–366 (1984).
  • Gruenberg J : The endocytic pathway: a mosaic of domains.Nat. Rev. Mol. Cell Biol.2(10), 721–730 (2001).
  • Clague MJ : Molecular aspects of the endocytic pathway.Biochem. J.336(2), 271–282 (1998).
  • Mukherjee S , GhoshRN, MaxfieldFR: Endocytosis.Physiol. Rev.77(3), 759–803 (1997).
  • Duncan R : Drug-polymer conjugates: potential for improved chemotherapy.Anti-Cancer Drugs3(3), 175–210 (1992).
  • Oishi M , NakamuraT, JinjiY, MatsuishiK, NagasakiY: Multi-stimuli-triggered release of charged dye from smart PEGylated nanogels containing gold nanoparticles to regulate fluorescence signals.J. Mater. Chem.19(33), 5909–5912 (2009).
  • Oishi M , NagasakiY: Synthesis, characterization, and biomedical applications of core-shell-type stimuli-responsive nanogels – nanogel composed of poly[2-(N,N-diethylamino)ethyl methacrylate] core and PEG tethered chains.React. Funct. Polym.67(11), 1311–1329 (2007).
  • Oishi M , HayashiH, ItakaK, KataokaK, NagasakiY: pH-responsive PEGylated nanogels as targetable and low invasive endosomolytic agents to induce the enhanced transfection efficiency of nonviral gene vectors.Colloid Polym. Sci.285(9), 1055–1060 (2007).
  • Oishi M , MiyagawaN, SakuraT, NagasakiY: pH-responsive PEGylated nanogel containing platinum nanoparticles: application to on-off regulation of catalytic activity for reactive oxygen species.React. Funct. Polym.67(7), 662–668 (2007).
  • Hayashi H , IijimaM, KataokaK, NagasakiY: pH-sensitive nanogel possessing reactive PEG tethered chains on the surface.Macromolecules37(14), 5389–5396 (2004).
  • Oishi M , SumitaniS, BronichTK, KabanovAV, BoskaMD, NagasakiY: Novel tumor-specific 19F-MRS/I nanoprobe based on pH-responsive PEGylated nanogel: pH-dependent 19F-magnetic resonance studies.Chem. Lett.38(2), 128–129 (2009).
  • Oishi M , SumitaniS, NagasakiY: On-off regulation of 19F magnetic resonance signals based on pH-sensitive PEGylated nanogels for potential tumor-specific smart 19F MRI probes.Bioconj. Chem.18(5), 1379–1382 (2007).
  • Oishi M , HayashiH, IijimaM, NagasakiY: Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels.J. Mater. Chem.17(35), 3720–3725 (2007).
  • Tamura A , OishiM, NagasakiY: Enhanced cytoplasmic delivery of siRNA using the stabilized polyion complexes based on PEGylated nanogels bearing cross-linked polyamine structure.Biomacromolecules10(7), 1818–1827 (2009).
  • Oishi M , TamuraA, NakamuraT, NagasakiY: A smart nanoprobe based on fluorescence-quenching PEGylated nanogel containing gold nanoparticles for monitoring the cancer response to therapy.Adv. Funct. Mater.19(6), 827–834 (2009).
  • Poehlein GW : Emulsion polymerization. In: Encyclopedia of Polymer Science and Engineering Second Edition (Volume 6). Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI (Eds). John Wiley & Sons, Inc., NY, USA, 1–51 (1986).
  • Westby MJ : Non-ionic emulsion polymerisation.Colloid Polym. Sci.266(1), 46–51 (1998).
  • Hoshino F , SasakiM, KawaguchiH, OhtsukaY: Soap-free latices of polyoxyethylene chain-binding particles.Polym. J.19(4), 383–389 (1998).
  • Lee AS , GastAP, BütünV, ArmesSP: Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles.Macromolecules32(13), 4302–4310 (1999).
  • Kobayashi H , BrechbielMW: Nano-sized MRI contrast agents with dendrimer cores.Adv. Drug Deliv. Rev.57(15), 2271–2286 (2005).
  • Caravan P , EllisonJJ, McMurryTJ, LaufferRB: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications.Chem. Rev.99(9), 2293–2352 (1999).
  • Yu J-X , Kodibagkar VD, Cui W, Mason RP: 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr. Med. Chem.12(7), 819–848 (2005).
  • Buetuen V , BillinghamNC, ArmesSP: Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: formation of micelles and reverse micelles in aqueous solution.J. Am. Chem. Soc.120(45), 11818–11819 (1998).
  • Duncan R : The dawning era of polymer therapeutics.Nat. Rev. Drug Discov.2(5), 347–360 (2003).
  • Kopecek J : Smart and genetically engineered biomaterials and drug delivery systems.Eur. J. Pharm. Sci.20(1), 1–16 (2003).
  • Maeda H : SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy.Adv. Drug Deliv. Rev.46(1–3) 169–185 (2001).
  • Avichechter D , SchechterB, ArnonR: Functional polymers in drug delivery: carrier-supported CDDP (cis-platin) complexes of polycarboxylates – effect on human ovarian carcinoma.React. Funct. Polym.36(1), 59–69 (1998).
  • Bogdanov A Jr, Wright SC, Marecos EM et al.: A long-circulating co-polymer in “passive targeting” to solid tumors. J. Drug Target.4(5), 321–330 (1997).
  • Lee CM , TanakaT, MuraiTet al.: Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo.Cancer Res.62(15), 4282–4288 (2002).
  • Gordon AN , FleagleJT, GuthrieD, ParkinDE, GoreME, LacaveA: Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan.J. Clin. Oncol.19(14), 3312–3322 (2001).
  • Newman MS , ColbernGT, WorkingPK, EngbersC, AmnteaMA: Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice.Cancer Chemother. Pharmacol.43(1), 1–7 (1999).
  • Nakanishi T , FukushimaS, OkanoKet al.: Development of the polymer micelle carrier system for doxorubicin.J. Control. Release74(1–3), 295–302 (2001).
  • Yokoyama M , OkanoT, SakuraiY, SuwaS, KataokaK: Introduction of cisplatin into polymeric micelle.J. Control. Release39(2–3) 351–356 (1996).
  • Maeda H , SawaT, KonnoT: Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS.J. Control. Release74(1–3), 47–61 (2001).
  • Lian T , HoRJY: Trends and developments in liposome drug delivery systems.J. Pharm. Sci.90(6), 667–680 (2001).
  • Vasey PA , KayeSB, MorrisonRet al.: Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates.Clin. Cancer Res.5(1), 83–94 (1999).
  • Tsukioka Y , MatsumuraY, HamaguchiT, KoikeH, MoriyasuF, KakizoneT: Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil).Cancer Sci.93(10), 1145–1153 (2002).
  • Kwon G , NaitoM, YokoyamaM, OkanoT, SakuraiY, KataokaK: Block copolymer micelles for drug delivery: loading and release of doxorubicin.J. Control. Release48(2–3), 195–201 (1997).
  • Gillies ER , FrechetJM: pH-responsive copolymer assemblies for controlled release of doxorubicin.Bioconj. Chem.16(2), 361–368 (2005).
  • Bae Y , FukushimaS, HaradaA, KataokaK: Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change.Angew. Chem. Int. Ed.42(38), 4640–4643 (2003).
  • Wirth T , KuhnelF, Fleischmann-MundtBet al.: Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor–related apoptosis-inducing ligand by elimination of Mcl-1.Cancer Res.65(16), 7393–7402 (2005).
  • Huesker M , FolmerY, SchneiderM, FuldaC, BlumHE, HafkemeyerP: Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes.Hepatology36(4), 874–884 (2002).
  • Omelyanenko V , KopeckováP, KopecekJ: Targetable HPMA copolymer–adriamycin conjugates. recognition, internalization, and subcellular fate.J. Control. Release53(1–3), 25–37 (1998).
  • Elbashir SM , HarborthJ, LendeckelW, YalcinA, WeberK, TuschlT: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411(6836), 494–498 (2001).
  • Fire A , XuS, MontgomeryMK, KostasSA, DriverSE, MelloCC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature391(6669), 806 (1998).
  • Paroo Z , CoreyDR: Challenges for RNAi in vivo.Trends Biotechnol.22(8), 390–394 (2004).
  • Itaka K , KanayamaN, NishiyamaNet al.: Supramolecular nanocarrier of siRNA from PEG-based block catiomer carrying diamine side chain with distinctive pKa directed to enhance intracellular gene silencing.J. Am. Chem. Soc.126(42), 13612–13613 (2004).
  • Schiffelers RM , AnsariA, XuJet al.: Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle.Nucleic Acids Res.32(19), E149 (2004).
  • Oishi M , NagasakiY, ItakaK, NishiyamaN, KataokaK: Lactosylated poly(ethylene glycol)–siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells.J. Am. Chem. Soc.127(6), 1624–1625 (2005).
  • Bartlett DW , DavisME: Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles.Bioconj. Chem.18(2), 456–468 (2007).
  • de Wolf HK , SnelCJ, VerbaanFJ, SchiffelersRM, HenninkWE, StormG: Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration.Int. J. Pharm.331, 167–175 (2007).
  • Sonawane ND , SzokaFC Jr, Verkman AS: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem.278(45), 44826–44831 (2003).
  • Boussif O , Lezoualc‘hF, ZantaMAet al.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc. Natl Acad. Sci. USA92(16), 7297–7301 (1995).
  • Vamvakaki M , BillinghamNC, ArmesSP: Synthesis of controlled structure water-soluble diblock copolymers via oxyanionic polymerization.Macromolecules32(6), 2088–2090 (1999).
  • Nagasaki Y , SatoY, KatoM: A novel synthesis of semitelechelic functional poly(methacrylate)s through an alcoholate initiated polymerization. Synthesis of poly[2-(N,N-diethylaminoethyl) methacrylate] macromonomer.Macromol. Rapid Cornmun.18(9), 827–835 (1997).
  • Chittimalla C , Zammut-ItalianoL, ZuberG, Behr J-P: Monomolecular DNA nanoparticles for intravenous delivery of genes. J. Am. Chem. Soc.127(32), 11436–11441 (2005).
  • El-Sayed IH , HuangX, El-SayedMA: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.Cancer Lett.239(1), 129–135 (2006).
  • Zharov VP , GalitovskyV, ViegasM: Photothermal detection of local thermal effects during selective nanophotothermolysis.Appl. Phys. Lett.83(24), 4897–4899 (2003).
  • Loo C , LoweryA, HalasN, WestJ, DrezekR: Immuno targeted nanoshells for integrated cancer imaging and therapy.Nano Lett.5(4), 709–711 (2005).
  • Hirsch LR , StaffordRJ, BanksonJAet al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl Acad. Sci. USA100(23), 13549–13554 (2003).
  • Kawano T , NiidomeY, MoriT, KatayamaY, NiidomeT: PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser.Bioconj. Chem.20(2), 209–210 (2009).
  • Huang X , El-SayedIH, QianW, El-SayedMA: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J. Am. Chem. Soc.12(6), 2115–2120 (2006).
  • Niidome T , YamagataM, OkamotoYet al.: PEG-modified gold nanorods with a stealth character for in vivo applications.J. Control. Release114(3), 343–347 (2006).
  • Link S , El-SayedMA: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods.J. Phys. Chem. B103(4), 8410–8426 (1999).
  • Boyer D , TamaratP, MaaliA, LounisB, OrritM: Phtothermal imaging of nanometer-sized metal particles among scatteres.Science297(5584), 1160–1163 (2002).
  • Oishi M , NakaogamiJ, IshiiT, NagasakiY: Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing.Chem. Lett.35(9), 1046–1047 (2006).
  • Hong R , HanG, FernandezJM, Kim B-J, Forbes NS, Rotello VM: Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc.128(4), 1078–1079 (2006).
  • Verma A , SimardJM, WorrallJW, RotelloVM: Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations.J. Am. Chem. Soc.126(43), 13987–13991 (2004).
  • Meister A , AndersonME: Glutathione.Annu. Rev. Biochem.52, 711–760 (1983).
  • Oishi M , HayashiH, UnoT, IshiiT, IijimaM, NagasakiY: One-pot synthesis of pH-responsive PEGylated nanogels containing gold nanoparticles by autoreduction of chloroaurate ions within nanoreactors.Macromol. Chem. Phys.208(11), 1176–1182 (2007).
  • Oishi M , NakamuraT, JinjiY, MatsuishiK, NagasakiY: Multi-stimuli-triggered release of charged dye from smart PEGylated nanogels containing gold nanoparticles to regulate fluorescence signals.J. Mater. Chem.19(33), 5909–5912 (2009).
  • Haba Y , KojimaC, HaradaA, UraT, HorinakaH, KonoK: Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability.Langmuir23(10), 5243–5246 (2007).
  • Schoenberger J , BauerJ, MoosbauerJ, EillesC, GrimmD: Innovative strategies in in vivo apoptosis imaging.Curr. Med. Chem.15(2), 187–194 (2008).
  • Thornberry NA , LazebnikY: Caspases: enemies within.Science281(5381), 1312–1316 (1998).
  • Lazebnik YA , KaufmannSH, DesnoyersS, PoirierGG, EarnshawWC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE.Nature371(6495), 346–347 (1994).
  • Wyllie AH : Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation.Nature284(5756), 555–556 (1980).
  • Myc A , MajorosIJ, ThomasTP, BakerJR Jr: Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules8(1), 13–18 (2007).
  • Stefflova K , ChenJ, MarottaD, LiH, ZhengG: Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ.J. Med. Chem.49(13), 3850–3856 (2006).
  • Wu Y , XingD, LuoS, TangY, ChenQ: Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis.Cancer Lett.235(2), 239–247 (2006).
  • Kim K , LeeM, ParkHet al.: Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging.J. Am. Chem. Soc.128(11), 3490–3495 (2006).
  • Tanford C , NozakiY, RohdeMF: Size and shape of globular micelles formed in aqueous solution by n-alkyl polyoxyethylene ethers.J. Phys. Chem.81(16), 1555–1560 (1977).
  • Gueroui Z , LibchaberA: Single-molecule measurements of gold-quenched quantum dots.Phys. Rev. Lett.93(16), 166108 (2004).
  • Zhang L , TorgersonTR, Liu X-Y et al.: Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proc. Natl Acad. Sci. USA95(16), 9148–9189 (1998).
  • Agasti SS , You C-C, Arumugam P, Rotello VM: Structural control of the monolayer stability of water-soluble gold nanoparticles. J. Mater. Chem.18(1), 70–73 (2008).
  • Isaacs SR , CutlerEC, Park J-S, Lee TR, Shon Y-S: Synthesis of tetraoctylammonium-protected gold nanoparticles with improved stability. Langmuir21(13), 5689–5692 (2005).
  • Templeton AC , HostetlerMJ, KraftCT, MurrayRW: Reactivity of monolayer-protected gold cluster molecules: steric effects.J. Am. Chem. Soc.120(8), 1906–1911 (1998).
  • Lee S , Cha E-J, Park K et al.: A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angwe. Chem. Int. Ed.47(15), 2804–2807 (2008).
  • Oishi M , NagasakiY, NishiyamaNet al.: Enhanced growth inhibition of hepatic multicellular tumor spheroids by lactosylated poly(ethylene glycol)-siRNA conjugate formulated in PEGylated polyplexes.ChemMedChem2(9), 1290–1297 (2007).
  • Thielecke H , MackA, RobitzkiA: A multicellular spheroid-based sensor for anti-cancer therapeutics.Biosens. Bioelectron.16(4–5), 261–269 (2001).
  • Desoize B , Jardillier J-C: Multicellular resistance: a paradigm for clinical resistance? Crit. Rev. Oncol. Hemat.36(2–3), 193–207 (2000).
  • Hamilton G : Multicellular spheroids as an in vitro tumor model.Cancer Lett.131(1), 29–34 (1998).
  • Santini MT , RainaldiG, IndovinaPL: Multicellular tumour spheroids in radiation biology.Int. J. Radiat. Biol.75(6), 787–799 (1999).
  • Sutherland RM : Cell and environment interactions in tumor microregions: the multicell spheroid model.Science240(4849), 177–184 (1988).
  • Moscona A : The development in vitro chimeric aggdegates of dissociated embryonic chick and mouse cells.Proc. Natl Acad. Sci. USA43(1), 184–194 (1957).
  • Falcieri E , MatelliAM, BareggiR, CataldiA, CoccoL: The protein kinase inhibitor staurosporine induces morphological changes typical of apoptosis in MOLT-4 cells without concomitant DNA fragmentation.Biochem. Biophys. Res. Commun.193(1), 19–25 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.