507
Views
2
CrossRef citations to date
0
Altmetric
Review

DNA-Incorporating Nanomaterials in Biotechnological Applications

, , &
Pages 319-334 | Published online: 11 Feb 2010

Bibliography

  • White KA , RosiNL: Gold nanoparticle-based assays for the detection of biologically relevant molecules.Nanomedicine3(4), 543–553 (2008).
  • Wang H , YangR, YangL, TanW: Nucleic acid conjugated nanomaterials for enhanced molecular recognition: ACS Nano. (2009).
  • Seeman NC : DNA in a material world.Nature421(6921), 427–431 (2003).
  • Chen JH , SeemanNC: Synthesis from DNA of a molecule with the connectivity of a Cube.Nature350(6319), 631–633 (1991).
  • Lee SH , MaoC: DNA nanotechnology.Biotechniques37(4), 517–519 (2004).
  • Rothemund PWK : Folding DNA to create nanoscale shapes and patterns.Nature440(7082), 297–302 (2006).
  • Wang X , SeemanNC: Assembly and characterization of 8-arm and 12-arm DNA branched junctions.J. Am. Clin. Soc.129(26), 8169–8176 (2007).
  • Wang ZD , LuY: Functional DNA directed assembly of nanomaterials for biosensing.J. Materials Chem.19(13), 1788–1798 (2009).
  • Maye MM , NykypanchukD, CuisinierM, van der Lelie D, Gang O: Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat. Mater.8(5), 388–391 (2009).
  • Rosi NL , GiljohannDA, ThaxtonCS, Lytton-JeanAK, HanMS, MirkinCA: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.Science312(5776), 1027–1030 (2006).
  • Alivisatos AP , JohnssonKP, PengXet al.: Organization of ‘nanocrystal molecules’ using DNA.Nature382(6592), 609–611 (1996).
  • Mirkin CA , LetsingerRL, MucicRC, StorhoffJJ: A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature382(6592), 607–609 (1996).
  • Medintz IL , UyedaHT, GoldmanER, MattoussiH: Quantum dot bioconjugates for imaging, labelling and sensing.Nat. Mater.4(6), 435–446 (2005).
  • Merkoci A : Electrochemical biosensing with nanoparticles.FEBS J.274(2), 310–316 (2007).
  • Lu H , SchopsO, WoggonU, NiemeyerCM: Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.J. Am. Chem. Soc.130(14), 4815–4827 (2008).
  • Algar WR , MasseyM, KrullUJ: The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics.Trac-Trends Analy. Chem.28(3), 292–306 (2009).
  • Wang J : Carbon-nanotube based electrochemical biosensors: A review.Electroanalysis17(1), 7–14 (2005).
  • Yigit MV , MazumdarD, LuY: MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles.Bioconjug. Chem.19(2), 412–417 (2008).
  • Zheng JW , LukemanPS, ShermanWBet al.: Metallic nanoparticles used to estimate the structural integrity of DNA motifs.Biophysical J.95(7), 3340–3348 (2008).
  • Martinez MT , TsengYC, OrmateguiN, LoinazI, EritjaR, BokorJ: Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors.Nano Letters9(2), 530–536 (2009).
  • Park HY , SchadtMJ, WangLet al.: Fabrication of magnetic core ‘shell Fe oxide’ Au nanoparticles for interfacial bioactivity and bio-separation.Langmuir23(17), 9050–9056 (2007).
  • Yan H , ParkSH, FinkelsteinG, ReifJH, LaBeanTH: DNA-templated self-assembly of protein arrays and highly conductive nanowires.Science301(5641), 1882–1884 (2003).
  • Xiao SJ , LiuFR, RosenAEet al.: Selfassembly of metallic nanoparticle arrays by DNA scaffolding.J. Nanopart. Res.4(4), 313–317 (2002).
  • Sharma J , ChhabraR, ChengA, BrownellJ, LiuY, YanH: Control of self-assembly of dna tubules through integration of gold nanoparticles.Science323(5910), 112–116 (2009).
  • Aldaye FA , SleimanHF: Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/wrase and structural switching.J. Am. Chem. Soc.129(14), 4130–4131 (2007).
  • Nykypanchuk D , MayeMM, van der Lelie D, Gang O: DNA-guided crystallization of colloidal nanoparticles. Nature451(7178), 549–552 (2008).
  • Xiong H , van der Lelie D, Gang O: DNA linker-mediated crystallization of nanocolloids. J. Am. Chem. Soc.130(8), 2442–2443 (2008).
  • Mastroianni AJ , ClaridgeSA, AlivisatosAP: Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds.J. Am. Chem. Soc.131(24), 8455–8459 (2009).
  • Huo FW , Lytton-JeanAKR, MirkinCA: Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects.Adv. Mater.18(17), 2304–2306 (2006).
  • Fu AH , MicheelCM, ChaJ, ChangH, YangH, AlivisatosAP: Discrete nanostructures of quantum dots/Au with DNA.J. Am. Chem. Soc.126(35), 10832–10833 (2004).
  • Niemeyer CM , CeyhanB, HazarikaP: Oligofunctional DNA–gold nanoparticle conjugates.Angewandte Chemie Int. Edn42(46), 5766–5770 (2003).
  • Aldaye FA , SleimanHF: Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles.Angewandte Chemie Int. Edn45(14), 2204–2209 (2006).
  • Steinbruck A , CsakiA, RitterK, LeichM, KohlerJM, FritzscheW: Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides.J. Biophotonics1(2), 104–113 (2008).
  • Chen W , BianA, AgarwalAet al.: Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials.Nano Letters9(5), 2153–2159 (2009).
  • Sebba DS , MockJJ, SmithDR, LaBeanTH, LazaridesAA: Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches.Nano Letters8(7), 1803–1808 (2008).
  • Maye MM , KumaraMT, NykypanchukD, ShermanWB, GangO: Switching binary states of nanoparticle superlatticesand dimer clusters by DNA strands.Nature Nanotechnol. (2009) DOI 10.1038/NNANO.2009.378 (Epub ahead of print).
  • Jain PK , HuangXH, El-SayedIH, El-SayedMA: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.Acc. Chem. Res.41(12), 1578–1586 (2008).
  • Rosi NL , MirkinCA: Nanostructures in biodiagnostics.Chem. Rev.105(4), 1547–1562 (2005).
  • Zhao W , BrookMA, LiYF: Design of gold nanoparticle-based colorimetric biosensing assays.Chembiochem.9(15), 2363–2371 (2008).
  • Song GT , ChenCE, RenJS, QuXG: A ample, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system.ACS Nano.3(5), 1183–1189 (2009).
  • Steinbru A , CsakiA, RitterK, LeichM, KohlerJM, FritzscheW: Gold and gold-silver core-shell nanoparticle constructs with defined size based on DNA hybridization.J. Nanopart. Res.11(3), 623–633 (2009).
  • Hill HD , MirkinCA: The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange.Nature Protocols1(1), 324–336 (2006).
  • Thompson DG , EnrightA, FauldsK, SmithWE, GrahamD: Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates.Analytical Chem.80(8), 2805–2810 (2008).
  • Chen CC , LinYP, WangCWet al.: DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation.J. Am. Chem. Soc.128(11), 3709–3715 (2006).
  • Sato K , HosokawaK, MaedaM: Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization.J. Am. Chem. Soc.125(27), 8102–8103 (2003).
  • Storhoff JJ , LucasAD, GarimellaV, BaoYP, MullerUR: Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes.Nat. Biotechnol.22(7), 883–887 (2004).
  • Sonnichsen C , ReinhardBM, LiphardtJ, AlivisatosAP: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles.Nat. Biotechnol.23(6), 741–745 (2005).
  • Wilson R : The use of gold nanoparticles in diagnostics and detection.Chem. Soc. Rev.37(9), 2028–2045 (2008).
  • Zhang GJ , MollerR, KretschmerR, CsakiA, FritzscheW: Microstructured arrays with pre-synthesized capture probes for DNA detection based on metal nanoparticles and silver enhancement.J. Fluoresc.14(4), 369–375 (2004).
  • Lee JS , HanMS, MirkinCA: Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles.Angew. Chem. Int. Ed. Engl46(22), 4093–4096 (2007).
  • Nguyen T , HiltonJP, LinQ: Emerging applications of aptamers to micro- and nanoscale biosensing.Microfluidics Nanofluidics6(3), 347–362 (2009).
  • Liu J , LuY: A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles.J. Am. Chem. Soc.125(22), 6642–6643 (2003).
  • Liu J , LuY: Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection.J. Am. Chem. Soc.126(39), 12298–12305 (2004).
  • Liu J , LuY: Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles.J. Fluoresc.14(4), 343–354 (2004).
  • Liu J , LuY: Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing.J. Am. Chem. Soc.127(36), 12677–12683 (2005).
  • Huang CC , HuangYF, CaoZ, TanW, ChangHT: Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors.Anal. Chem.77(17), 5735–5741 (2005).
  • Liu JW , LuY: Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity.Adv. Mater.18(13), 1667–1671 (2006).
  • Sapsford KE , PonsT, MedintzIL, MattoussiH: Biosensing with luminescent semiconductor quantum dots.Sensors6(8), 925–953 (2006).
  • Dulkeit E , MorteaniAC, NiedereichholzTet al.: Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects.Phys. Rev. Lett.89(20), 203002 (2002).
  • Dubertret B , CalameM, LibchaberAJ: Single-mismatch detection using gold-quenched fluorescent oligonucleotides 19, 365, (2001).Nature Biotechnol.19(7), 680–681 (2001).
  • Huang CC , ChiuSH, HuangYF, ChangHT: Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor.Anal. Chem.79(13), 4798–4804 (2007).
  • Zheng D , SeferosDS, GiljohannDA, PatelPC, MirkinCA: Aptamer nano-flares for molecular detection in living cells.Nano Letters9(9), 3258–3261 (2009).
  • Gerion D , ChenF, KannanBet al.: Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays.Analytical Chem.75(18), 4766–4772 (2003).
  • Xiao Y , BarkerPE: Semiconductor nanocrystal probes for human metaphase chromosomes.Nucleic Acids Res.32(3) (2004).
  • Zhou DJ , YingLM, HongX, HallEA, AbellC, KlenermanD: A compact functional quantum dot–DNA conjugate: preparation, hybridization, and specific label-free DNA detection.Langmuir24(5), 1659–1664 (2008).
  • Levy M , CaterSF, EllingtonAD: Quantum-dot aptamer beacons for the detection of proteins.Chembiochem.6(12), 2163–2166 (2005).
  • Feng CL , ZhongXH, SteinhartM, CaminadeAM, MajoralJP, KnollW: Graded-bandgap quantum-dot-modified nanotubes: A sensitive biosensor for enhanced detection of DNA hybridization.Adv. Mater.19(15), 1933 (2007).
  • Liu J , LeeJH, LuY: Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes.Anal. Chem.79(11), 4120–4125 (2007).
  • Fleischmann M , HendraPJ, McQuillanAJ: Raman-spectra of pyridine adsorbed at a silver electrode.Chem. Phys. Lett.26(2), 163–166 (1974).
  • Hering K , CiallaD, AckermannKet al.: SERS: a versatile tool in chemical and biochemical diagnostics.Anal BioAnal. Chem.390(1), 113–124 (2008).
  • Graham D , ThompsonDG, SmithWE, FauldsK: Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles.Nature Nanotechnol.3(9), 548–551 (2008).
  • Qian X , ZhouX, NieS: Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling.J. Am. Chem. Soc.130(45), 14934–14935 (2008).
  • Lee J , HasanW, StenderCL, OdomTW: Pyramids: a platform for designing multifunctional plasmonic particles.Acc. Chem. Res.41(12), 1762–1771 (2008).
  • Li J , NgHT, CassellAet al.: Carbon nanotube nanoelectrode array for ultrasensitive DNA detection.Nano Letters3(5), 597–602 (2003).
  • Wang J , LiuGD, JanMR: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events.J. Am. Chem. Soc.126(10), 3010–3011 (2004).
  • Drummond TG , HillMG, BartonJK: Electrochemical DNA sensors.Nat. Biotechnol.21(10), 1192–1199 (2003).
  • Schuler T , AsmusT, FritzscheW, MollerR: Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA.Biosens. Bioelectron.24(7), 2077–2084 (2009).
  • Diessel E , GrotheK, SiebertHM, WarnerBD, BurmeisterJ: Online resistance monitoring during autometallographic enhancement of colloidal Au labels for DNA analysis.Biosens. Bioelectron.19(10), 1229–1235 (2004).
  • Guo SJ , DongSJ: Biomolecule-nanoparticle hybrids for electrochemical biosensors.Trac-Trends Analy. Chem.28(1), 96–109 (2009).
  • Guo S , WangE: Synthesis and electrochemical applications of gold nanoparticles.Anal. Chim. Acta598(2), 181–192 (2007).
  • Li D , YanY, WieckowskaA, WillnerI: Amplified electrochemical detection of DNA through Au nanoparticles on electrodes and the incorporation into the DNA-crosslinked structure.Chem. Comm.14(34), 3544–3546 (2007).
  • Park SJ , TatonTA, MirkinCA: Array-based electrical detection of DNA with nanoparticle probes.Science295(5559), 1503–1506 (2002).
  • Wang J , LiuGD, MerkociA: Electrochemical coding technology for simultaneous detection of multiple DNA targets.J. Am. Chem. Soc.125(11), 3214–3215 (2003).
  • Hansen JA , MukhopadhyayR, HansenJO, GothelfKV: Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles.J. Am. Chem. Soc.128(12), 3860–3861 (2006).
  • Guo XF , GorodetskyAA, HoneJ, BartonJK, NuckollsC: Conductivity of a single DNA duplex bridging a carbon nanotube gap.Nature Nanotechnol.3(3), 163–167 (2008).
  • Star A , TuE, NiemannJ, GabrielJCP, JoinerCS, ValckeC: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors.Proc. Natl Acad. Sci. USA103(4), 921–926 (2006).
  • So HM , ParkDW, JeonEKet al.: Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors.Small4(2), 197–201 (2008).
  • Park JY : Carbon nanotube field-effect transistor with a carbon nanotube gate electrode.Nanotechnology18(9), 095202 (2007).
  • Maehashi K , KatsuraT, KermanK, TakamuraY, MatsumotoK, TamiyaE: Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors.Analytical Chem.79(2), 782–787 (2007).
  • Gui EL , LiLJ, ZhangKet al.: DNA sensing by field-effect transistors based on networks of carbon nanotubes.J. Am. Chem. Soc.129(46), 14427–14432 (2007).
  • Yigit MV , MazumdarD, KimHK, LeeJH, OdintsovB, LuY: Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles.Chembiochem.8(14), 1675–1678 (2007).
  • Josephson L , PerezJM, WeisslederR: Magnetic nanosensors for the detection of oligonucleotide sequences.Angewandte Chemie Int. Edn40(17), 3204 (2001).
  • Perez JM , JosephsonL, O‘LoughlinT, HogemannD, WeisslederR: Magnetic relaxation switches capable of sensing molecular interactions.Nat. Biotechnol.20(8), 816–820 (2002).
  • Ghosh P , HanG, DeM, KimCK, RotelloVM: Gold nanoparticles in delivery applications.Adv. Drug Deliv. Rev.60(11), 1307–1315 (2008).
  • Yeh P , PerricaudetM: Advances in adenoviral vectors: from genetic engineering to their biology.Faseb J.11(8), 615–623 (1997).
  • Giljohann DA , SeferosDS, PatelPC, MillstoneJE, RosiNL, MirkinCA. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett.7(12), 3818–3821 (2007).
  • Lee SE , LiuGL, KimF, LeeLP: Remote Optical switch for localized and selective control of gene interference.Nano. Letters9(2), 562–570 (2009).
  • Wijaya A , SchafferSB, PallaresIG, Hamad-SchifferliK: Selective release of multiple DNA oligonucleotides from gold nanorods.ACS Nano.3(1), 80–86 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.