626
Views
0
CrossRef citations to date
0
Altmetric
Review

Liposomes as Drug Delivery Systems for The Treatment of TB

, , &
Pages 1413-1428 | Published online: 25 Oct 2011

Bibliography

  • Sutherland JS , de Jong BC, Jeffries DJ, Adetifa IM, Ota MO. Production of TNF-α, IL-12(p40) and IL-17 can discriminate between active TB disease and latent infection in a west African cohort. PLoS ONE5(8), E12365 (2010).
  • Hall G , LeffD, GumboT. Treatment of active pulmonary tuberculosis in adults: current standards and recent advances. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy29, 1468–1481 (2009).
  • Raviglione MC , SniderDE Jr, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA273, 220–226 (1995).
  • Tiwari RP , TiwariD, GargSK, ChandraR, BisenPS. Glycolipids of Mycobacterium tuberculosis strain H37Rv are potencial serological markers for diagnosis of active tuberculosis. Clin. Diagn. Lab. Immunol.12, 465–473 (2005).
  • Chimote G , BanerjeeR. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J. Biomed. Mater. Res. A.89, 281–292 (2009).
  • Agrawal AK , GuptaCM. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv. Drug Deliver. Rev.41, 135–146 (2000).
  • Thanyani ST , RobertsV, SikoDGR, VreyP, VerschoorJA. A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. J. Immunol. Methods.332, 61–72 (2008).
  • Kurmi BD , KayatJ, GajbhiyeV, TekadeRK, JainNK. Micro- and nanocarrier-mediated lung targeting. Expert Opin. Drug Deliv.7, 781–794 (2010).
  • Justo OR , MoraesAM. Incorporation of antibiotics in liposomes designed for tuberculosis therapy by inhalation. Drug Deliv.10, 201–207 (2003).
  • Santos N , CastanhoM. Liposomes: has the magic bullet hit the target? Quim. Nova.25, 1181–1185 (2002).
  • Bowden DH . The alveolar macrophage. Environ. Health Persp.55, 327–341 (1984).
  • Sosnik A , CarcabosoAM, GlisoniRJ, MorettonMA, ChiappettaD. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv. Drug Deliver. Rev.62, 547–559 (2010).
  • Deol P , KhullerG, JoshiK. Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob. Agents Chemother.41(6), 1211–1214 (1997).
  • Pieters J . Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe3, 399–407 (2008).
  • Gaspar MM , CruzA, PenhaAFet al. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicrob. Agents 31, 37–45 (2008).
  • Krishnan N , RobertsonBD, ThwaitesG. The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis90, 361–366 (2010).
  • Kaufmann SHE . Tuberculosis: back on commentary the immunologists’ agenda. Immunity24, 351–357 (2006).
  • Kartmann B , StengerS, NiederweisM. Porins in the cell wall of Mycobacterium tuberculosis. J. Bacteriol.181, 6543–6546 (1999).
  • Vyas SP , KannanME, JainS, MishraV, SinghP. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm.269, 37–49 (2004).
  • Bold TD , ErnstJD. Who benefits from granulomas, mycobacteria or host? Cell136, 17–19 (2009).
  • Saunders BM , CooperAM. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol. Cell Biology78, 334–341 (2000).
  • Peyron P , VaubourgeixJ, PoquetYet al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).
  • Co DO , HoganLH, KimSI, SandorM. Mycobacterial granulomas: keys to a long-lasting host-pathogen relationship. Clin. Immunol.113, 130–136 (2004).
  • Cardona PJ . RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis86, 273–289 (2006).
  • Guidry TV , HunterRL Jr, Actor JK. Mycobacterial glycolipid trehalose 6,6´-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. Microbiology153, 3360–3369 (2007).
  • Sundaramurthy V , PietersJ. Interactions of pathogenic mycobacteria with host macrophages. Microbes. Infect.9, 1671–1679 (2007).
  • Steenwinkel JEM , VianenW, KateMTet al. Targeted drug delivery to enhance efficacy and shorten treatament duration in disseminated Mycobacterium avium infection in mice. J. Antimicrob. Chemoth. 60, 1064–1073 (2007).
  • Figueiredo R , MoiteiroC, MedeirosMAet al. Synthesis and evaluation of rifabutin analogs aganist Mycobacterium avium and H37Rv, MDR, and NRP Mycobacterium tuberculosis. Bioorg. Med. Chem. 17, 503–511 (2009).
  • Cardona PJ , AmatI. Origin and development of RUTI, a new therapeutic vaccine against Mycobacterium tuberculosis infection. Arch. Bronconeumol.42, 25–32 (2006).
  • Ahsan MJ , SamyJG, DuttKRet al. Design, synthesis and antimycobacterial evaluation of novel 3-substituted-N-aryl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2 -carboxamide analogues. Bioorg. Med. Chem. Lett. 21, 4451–4453 (2011).
  • Barry CE , 3rd Blanchard JS. The chemical biology of new drugs in the development for tuberculosis. Curr. Opin. Chem. Biol.14, 456–466 (2010).
  • Chauhan PM , SunduruN, SharmaM. Recent advances in the design and synthesis of heterocycles as anti-tubercular agents. Fut. Med. Chem.2, 1469–1500 (2011).
  • Kantevari S , YempalaT, SurineniG, SridharB, YogeeswariP, SriramD. Synthesis and antitubercular evaluation of novel dibenzo[b,d]furan and 9-methyl-9H-carbazole derived hexahydro-2H-pyrano[3,2-c]quinolines via Povarov reaction. Eur. J. Med. Chem. (2011).
  • Leibert E , RomWN. New drugs and regimens for treatment of TB. Expert Rev. Anti Infect. Ther.8, 801–813 (2010).
  • Li Y , ZhouY, MaY, LiX. Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydr. Res.346(13), 1714–1720 (2011).
  • Lounis N , GuillemontJ, VezirisN, KoulA, JarlierV, AndriesK. [R207910 (TMC207): a new antibiotic for the treatment of tuberculosis]. Med. Mal. Infect.40, 383–390 (2010).
  • Moraski GC , MarkleyLD, HipskindPAet al. Advent of Imidazo[1,2-a]pyridine-3-carboxamides with potent multi- and extended drug resistant antituberculosis activity. ACS Med. Chem. Lett. 2, 466–470 (2011).
  • Mugunthan G , SriramD, YogeeswariP, Ravindranathan Kartha KP. Synthesis and biological evaluation of sugar-derived chiral nitroimidazoles as potential antimycobacterial agents. Carbohydr. Res.346(13), 1760–1766. (2011).
  • Sala C , HartkoornRC. Tuberculosis drugs: new candidates and how to find more. Fut. Microbiol.6, 617–633 (2011).
  • Shi R , SugawaraI. Development of new anti-tuberculosis drug candidates. Tohoku. J. Exp. Med.221, 97–106 (2010).
  • Speck-Planche A , ScottiMT, de Paulo-Emerenciano V. Current pharmaceutical design of antituberculosis drugs: future perspectives. Curr. Pharm. Des.16, 2656–2665 (2010).
  • Rodrigues C , GameiroP, PrietoM, CastroB. Interaction of rifampicin and isoniazid with large unilamellar liposomes: spectroscopic location studies. Biochim. Biophys. Acta.1620, 151–159 (2003).
  • Owen R , StrastersJ, BreyerED. Lipid vesicles in capillary electrophoretic techniques: characterization of structural properties and associated membrane-molecule interactions. Electrophoresis26, 735–751 (2005).
  • Balen GP , MartinetCM, CaronGet al. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med. Res. Rev. 24, 299–324 (2004).
  • Moghimi SM , HunterAC, MurrayJC. Nanomedicine: current status and future prospects. FASEB J.19, 311–330 (2005).
  • Dean AS . Liposomal drug delivery. J. Infus. Nurs.30, 89–95 (2007).
  • Malam Y , LoizidouM, SeifalianAM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci.30, 592–599 (2009).
  • Zhang L , PornpattananangkuD, HuCM, HuangCM. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem.17, 585–594 (2010).
  • Sanvicens N , MarcoMP. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol.26, 425–433 (2008).
  • Bangham AD , StandishMM, WatkinsJC. Diffusion of univalent ions across lamellae of swollen phospholipids. J. Mol. Biol.13, 238–252 (1965).
  • Schroeder A , KostJ, BarenholzY. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids162, 1–16 (2009).
  • Lindner LH , HossannM. Factors affecting drug release from liposomes. Curr. Opin. Drug Discov. Devel.13, 111–123 (2010).
  • Farokhzad OC , LangerR. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliver. Rev.58, 1456–1459 (2006).
  • Bawarski WE , ChidlowskyE, BharaliDJ, MousaSA. Emerging nanopharmaceuticals. Nanomed-Nanotechnol.4, 273–282 (2008).
  • Huang YZ , GaoJQ, LiangWQ, NakagawaS. Preparation and characterization of liposomes encapsulating chitosan nanoparticles. Biol. Pharm. Bull.28, 387–390 (2005).
  • Koo OM , RubinsteinI, OnyukselH. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed-Nanotechnol.1, 193–212 (2005).
  • Immordino ML , DosioF, CattelL. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed.1, 297–315 (2006).
  • Williams DF . On the nature of biomaterials. Biomaterials30, 5897–5909 (2009).
  • Barratt G , BretagneS. Optimizing efficacy of amphotericin B through nanomodification. Int. J. Nanomed.2, 301–313 (2007).
  • Agarwal A , KandpalH, GuptaH, SinghN, GuptaC. Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice. Antimicrob. Agents Chemother.38, 588–593 (1994).
  • Vyas SP , KhatriK. Liposome-based drug delivery to alveolar macrophages. Expert Opin. Drug Deliv.4, 95–99 (2007).
  • Pandey R , KhullerGK. Antitubercular inhaled therapy: opportunities, progress and challenges. J. Antimicrob. Chemoth.55, 430–435 (2005).
  • Resnik DB , TinkleSS. Ethics in nanomedicine. Nanomedicine (Lond.)2, 345–350 (2007).
  • Hoet P , LegiestB, GeysJ, NemeryB. Do nanomedicines require novel safety assessments to ensure their safety for long-term human use? Drug Safety32, 625–636 (2009).
  • Pandey R , KhullerGK. Nanotechnology based drug delivery system(s) for the management of tuberculosis. Indian J. Exp. Biol.44, 357–366 (2006).
  • Deol P , KhullerGK. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim. Biophys. Acta.1334, 161–172 (1997).
  • Pison U , WelteT, GiersingM, GronebergDA. Nanomedicine for respiratoy diseases. Eur. J. Pharmacol.533, 341–350 (2006).
  • Gill S , LöbenbergR, KuT, AzarmiS, RoaW, PrennerEJ. Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery – a review. J. Biomed. Nanotechnol.3, 107–119 (2007).
  • Andrade F , VideiraM, FerreiraD, SarmentoB. Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine (Lond.)6, 123–141 (2011).
  • Medina C , Santos-MartinezMJ, RadomskiA, CorriganOI, RadomskiMW. Nanoparticles: pharmacological and toxicological significance. Brit. J. Pharmacol.150, 552–558 (2007).
  • Surendiran A , SandhiyaS, PradhanSC, AdithanC. Novel applications of nanotechnology in medicine. Indian. J. Med. Res.130, 689–701 (2009).
  • El-Ridy MS , MostafaDM, ShehabA, NasrEA, AbdES. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm.330, 82–88 (2007).
  • Mobley C , HochhausG. Pharmacokinetic considerations in the design of pulmonary drug delivery systems for glucocorticoids. In: Drug Targeting Technology: Physical, Chemical, Biological Methods. Volume 115 (1st Edition). Schreier H (Ed.). New York, Informa Healthcare 72–73 (2001).
  • Dhillon J , FieldingR, Adler-MooreJ, GoodaelRL, MitchisonD. The activity of low-clearance liposomal amikacin in experimental murine tuberculosis. J. Antimicrob. Chemoth.48, 869–876 (2001).
  • Pandey R , SharmaS, KhullerGK. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int. J. Antimicrob. Ag.24, 93–94 (2004).
  • Huynh NT , PassiraniC, SaulnierP, BenoitJP. Lipid nanocapsules: a new platform for nanomedicine. Int. J. Pharm.379, 201–209 (2009).
  • Irache JM , SalmanHH, GamazoC, EspuelasS. Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Deliv.5, 703–724 (2008).
  • Labana S , PandeyR, SharmaS, KhullerGK. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int. J. Antimicrob. Ag.20, 301–304 (2002).
  • Chono S , KanekoK, YamamotoE, TogamiK, MorimotoK. Effect of surface-mannose modification on aerosolized liposomal delivery to alveolar macrophages. Drug. Dev. Ind. Pharm. (2009).
  • Wijagkanalan W , KawakamiS, TakenagaM, IgarashiR, YamashitaF, HashidaM. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J. Control. Release125, 121–130 (2008).
  • Zaru M , MourtasS, KlepetsanisP, FaddaAM, AntimisiarisSG. Liposomes for drug delivery to the lungs by nebulization. Eur. J. Pharm. Biopharm.67, 655–666 (2007).
  • Ravaoarinoro M , TomaE, AgbabaO, MorissetR. Efficient entrapment of amikacin and teicoplanin in liposomes. J. Drug Target.1, 191–195 (1993).
  • Maurer N , FenskeDB, CullisPR. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther.1, 923–947 (2001).
  • Korf J , StoltzA, VerschoorJ, De Baetselier P, Grooten J. The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur. J. Immunol.35, 890–900 (2005).
  • Andersen CA , RosenkrandsI, OlsenAWet al. Novel generation mycobacterial adjuvant based on liposome-encapsulated monomycoloyl glycerol from Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol. 183, 2294–2302 (2009).
  • Dascher CC , HiromatsuK, XiongXet al. Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int. Immunol. 15, 915–925 (2003).
  • Christensen D , AggerEM, AndreasenLV, KirbyD, AndersenP, PerrieY. Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J. Liposome Res.19, 2–11 (2009).
  • Cui Z , MumperRJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit. Rev. Ther. Drug Carrier Syst.20, 103–137 (2003).
  • Koga H , MiyazakiY, KohnoS, HaraK. A drug delivery system and biological response modifiers for the treatment of mycobacterial infection. Kekkaku69, 113–118 (1994).
  • Okada M . Novel vaccines against tuberculosis. Kekkaku81, 745–751 (2006).
  • Lalloo UG , AmbaramA. New antituberculous drugs in development. Curr. HIV/AIDS Rep.7, 143–151 (2010).
  • Jain KK . Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract.17, 89–101 (2008).
  • Azarmi S , RoaW, LoebenbergR. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliver. Rev.60, 863–875 (2008).
  • Comas I , GagneuxS. The past and the future of tuberculosis research. PLoS Pathog.5, (2009).
  • Ginsberg AM . Tuberculosis drug development: progress, challenges, and the road ahead. Tuberculosis90, 162–167 (2010).
  • Nuermberger EL , SpigelmanMK, YewWW. Current development and future prospects in chemotherapy of tuberculosis. Respirology15, 764–778 (2010).
  • Pai M , MinionJ, SteingartK, RamsayA. New and improved tuberculosis diagnostics: evidence, policy, practice, and impact. Curr. Opin. Pulm. Med.16, 271–284 (2010).
  • Traini D , YoungPM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin. Drug Deliv.6, 897–905 (2009).
  • Craven DE , StegerKA, HirschornLR. Nosocomial colonization and infection in persons infected with human immunodeficiency virus. Infect. Control Hosp. Epidemiol.17, 304–318 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.