1,102
Views
0
CrossRef citations to date
0
Altmetric
Review

Quantum Dots and Carbon Nanotubes in Oncology: A Review on Emerging Theranostic Applications in Nanomedicine

, , , , &
Pages 1101-1114 | Published online: 26 Aug 2011

Bibliography

  • Frangioni JV . New technologies for human cancer imaging. J. Clin. Oncol.26, 4012–4021 (2008).
  • Harvey RA , ChampePC: Anticancer drugs. In: Lippincott‘s Illustrated Reviews Pharmacology. 4th Edition. Finkel R, Cubeddu LX, Clark MA (Eds). Lippincott Williams & Wilkins, 457–488 (2010).
  • Choi HS , LiuW, LiuF, NasrK, MisraP, BawendiMGet al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).
  • Thiesen B , JordanA. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia24, 467–474 (2008).
  • Iga AM , RobertsonJH, WinsletMC, SeifalianAM. Clinical potential of quantum dots. J. Biomed. Biotechnol.2007, 76087 (2007).
  • Tan A , De La Peña H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int. J. Nanomedicine5, 889–900 (2010).
  • Ghasemi Y , PeymaniP, AfifiS. Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed.80, 156–165 (2009).
  • Klingeler R , HampelS, BuchnerB. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int. J. Hyperthermia24, 496–505 (2008).
  • Chen JY , LeeYM, ZhaoDet al. Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem. Photobiol. 86, 431–437 (2010).
  • Kaul Z , YaguchiT, KaulSC, HiranoT, WadhwaR, TairaK. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res.13, 503–507 (2003).
  • Li R , DaiH, WheelerTMet al. Prognostic value of Akt-1 in human prostate cancer: a computerized quantitative assessment with quantum dot technology. Clin. Cancer Res. 15, 3568–3573 (2009).
  • Minet O , DresslerC, BeuthanJ. Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells. J. Fluoresc.14, 241–247 (2004).
  • Michalet X , PinaudFF, BentolilaLAet al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
  • Zhang J , JiaX, LvXJ, DengYL, XieHY. Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta81, 505–509 (2010).
  • Zajac A , SongD, QianW, ZhukovT. Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf. B. Biointerfaces,58, 309–314 (2007).
  • Xiao Y , GaoX, GannotGet al. Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int. J. Cancer 122, 2178–2186 (2008).
  • Ghazani AA , LeeJA, KlostranecJet al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett. 6, 2881–2886 (2006).
  • Smith BR , ChengZ, DeA, KohAL, SinclairR, GambhirSS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett.8, 2599–2606 (2008).
  • Yu X , ChenL, LiK, LiY, XiaoS, LuoXet al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J. Biomed. Opt. 12, 014008 (2007).
  • Tada H , HiguchiH, WanatabeTM, OhuchiN. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res.67, 1138–1144 (2007).
  • Weng KC , NobleCO, Papahadjopoulos-SternbergB, ChenFF, DrummondDC, KirpotinDBet al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 8, 2851–2857 (2008).
  • Chen C , PengJ, XiaHet al. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology 21(9), 095101 (2010).
  • Gokarna A , JinLH, HwangJSet al. Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics 8, 1809–1818 (2008).
  • Shi C , ZhuY, XieZet al. Visualizing human prostate cancer cells in mouse skeleton using bioconjugated near-infrared fluorescent quantum dots. Urology 74, 446–451 (2009).
  • Kerman K , EndoT, TsukamotoM, ChikaeM, TakamuraY, TamiyaE. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta71, 1494–1499 (2007).
  • Manzoor K , JohnyS, ThomasD, SetuaS, MenonD, NairS. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology20(6), 065102 (2009).
  • Yong KT , RoyI, HuR, DingH, CaiH, ZhuJet al. Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr. Biol. (Camb.) 2, 121–129 (2010).
  • Snyder EL , BaileyD, ShipitsinM, PolyakK, LodaM. Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab. Invest.89, 857–866 (2009).
  • Orndorff RL , RosenthalSJ. Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells. Nano Lett.9, 2589–2599 (2009).
  • Stroh M , ZimmerJP, DudaDGet al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 11, 678–682 (2005).
  • Chen LD , LiuJ, YuXFet al. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 29, 4170–4176 (2008).
  • Zhang H , ZengX, LiQ, Gaillard-KellyM, WagnerCR, YeeD. Fluorescent tumour imaging of type I IGF receptor in vivo: comparison of antibody-conjugated quantum dots and small-molecule fluorophore. Br. J. Cancer101, 71–79 (2009).
  • Hu M , YanJ, HeY, LuH, WengL, SongSet al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano. 4, 488–494 (2010).
  • Huang DH , SuL, PengXHet al. Quantum dot-based quantification revealed differences in subcellular localization of EGFR and E-cadherin between EGFR-TKI sensitive and insensitive cancer cells. Nanotechnology 20(22), 225102 (2009).
  • Wu X , LiuH, LiuJet al. Immunofluorescent labeling of cancer marker HER2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).
  • Mulder WJ , CastermansK, van Beijnum JR et al. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis12, 17–24 (2009).
  • Glazer ES , CurleySA. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer116, 3285–3293 (2010).
  • Kobayashi H , OgawaM, KosakaN, ChoykePL, UranoY. Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine (Lond.)4, 411–419 (2009).
  • Yoo JS , KimHB, WonNet al. Evidence for an additional metastatic route: in vivo imaging of cancer cells in the primo-vascular system around tumors and organs. Mol. Imaging Biol. (2010).
  • Li Z , WangK, TanW, LiJ, FuZ, MaCet al. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal. Biochem. 354, 169–174 (2006).
  • Al-Jamal WT , Al-JamalKT, TianBet al. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano. 2, 408–418 (2008).
  • Diagaradjane P , Orenstein-CardonaJM, Colon-CasasnovasNEet al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res. 14, 731–741 (2008).
  • Al-Jamal WT , Al-JamalKT, BomansPH, FrederikPM, KostarelosK. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small4, 1406–1415 (2008).
  • Voura EB , JaiswalJK, MattoussiH, SimonSM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med.10, 993–998 (2004).
  • Zdobnova TA , DorofeevSG, TananaevPNet al. Imaging of human ovarian cancer SKOV-3 cells by quantum dot bioconjugates. Dokl. Biochem. Biophys. 430, 41–44 (2010).
  • Wang G , WangC, DouW, MaQ, YuanP, SuX. The synthesis of magnetic and fluorescent bi-functional silica composite nanoparticles via reverse microemulsion method. J. Fluoresc.19, 939–946 (2009).
  • Bagalkot V , ZhangL, Levy-NissenbaumEet al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007).
  • Iijima S . Helical microtubules of graphitic carbon. Nature354, 56–58 (1991).
  • Baughman RH , ZakhidovAA, de Heer WA. Carbon nanotubes – the route toward applications. Science297, 787–792 (2002).
  • Lau KT , HuiD. The revolutionary creation of new advanced materials – carbon nanotube composites. Compos. Part B-Eng.33, 263–277 (2002).
  • Liu Z , TabakmanS, WelsherK, DaiH. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res.2, 85–120 (2009).
  • Strano MS , DykeCA, UsreyMLet al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).
  • Cho YM , HanSW, KimG, LeeH, IhmJ. Orbital hybridization and charge transfer in carbon nanopeapods. Phys. Rev. Lett.90(10), 106402 (2003).
  • Zhao XL , AndoY, LiuY, JinnoM, SuzukiT. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett.90(18), 187401 (2003).
  • Dai H . Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res.35, 1035–1044 (2002).
  • Zhang Y , BaiY, YanB. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today15, 428–435 (2010).
  • Schipper ML , Nakayama-RatchfordN, DavisCRet al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3, 216–221 (2008).
  • Heister E , LamprechtC, NevesVet al. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano. 4, 2615–2626 (2010).
  • Georgakilas V , KordatosK, PratoM, GuldiDM, HolzingerM, HirschA. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc.124, 760–761 (2002).
  • Prato M , KostarelosK, BiancoA. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res.41, 60–68 (2008).
  • Kostarelos K , BiancoA, PratoM. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol.4, 627–633 (2009).
  • Petros RA , DeSimoneJM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug. Discov.9, 615–627 (2010).
  • Ibrahim NK , DesaiN, LeghaSet al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8, 1038–1044 (2002).
  • Campos SM , PensonRT, MaysARet al. The clinical utility of liposomal doxorubicin in recurrent ovarian cancer. Gynecol. Oncol. 81, 206–212 (2001).
  • Chaudhuri P , SoniS, SenguptaS. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology21(2), 025102 (2010).
  • Dhar S , LiuZ, ThomaleJ, DaiH, LippardSJ. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc.130, 11467–11476 (2008).
  • Wu W , LiR, BianXet al. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano. 3, 2740–2750 (2009).
  • Pastorin G , WuW, WieckowskiSet al. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun. (Camb.) 1182–1184 (2006).
  • Yinghuai Z , PengAT, CarpenterK, MaguireJA, HosmaneNS, TakagakiM. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc.127, 9875–9880 (2005).
  • Ali-Boucetta H , Al-JamalKT, McCarthyD, PratoM, BiancoA, KostarelosK. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. (Camb.)459–461 (2008).
  • Liu Z , FanAC, RakhraKet al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl. 48, 7668–7672 (2009).
  • Weng X , WangM, GeJet al. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol. Biosyst. 5, 1224–1231 (2009).
  • Podesta JE , Al-JamalKT, HerreroMAet al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5, 1176–1185 (2009).
  • Lay CL , LiuHQ, TanHR, LiuY. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology21(6), 065101 (2010).
  • Liu Z , ChenK, DavisCet al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).
  • Degim IT , BurgessDJ, PapadimitrakopoulosF. Carbon nanotubes for transdermal drug delivery. J. Microencapsul.27(8), 669–681 (2010).
  • Chaudhuri P , HarfoucheR, SoniS, HentschelDM, SenguptaS. Shape effect of carbon nanovectors on angiogenesis. ACS Nano.4, 574–582 (2010).
  • Liu Z , DavisC, CaiW, HeL, ChenX, DaiH. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA105, 1410–1415 (2008).
  • Chen J , ChenS, ZhaoX, KuznetsovaLV, WongSS, OjimaI. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc.130, 16778–16785 (2008).
  • Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine6, 245–256 (2010).
  • Cai D , MatarazaJM, QinZHet al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449–454 (2005).
  • Hampel S , KunzeD, HaaseDet al. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine (Lond) 3, 175–182 (2008).
  • Mahmood M , KarmakarA, FejlehAet al. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug. Nanomedicine (Lond.) 4, 883–893 (2009).
  • Zhang X , MengL, LuQ, FeiZ, DysonPJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials30, 6041–6047 (2009).
  • Zhang JJ , GuMM, ZhengTT, ZhuJJ. Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. Anal. Chem.81, 6641–6648 (2009).
  • Li R , WuR, ZhaoL, WuM, YangL, ZouH. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano.4, 1399–1408 (2010).
  • Ou Z , WuB, XingD, ZhouF, WangH, TangY. Functional single-walled carbon nanotubes based on an integrin alpha v beta 3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology20, 105102 (2009).
  • Xiao Y , GaoX, TaratulaOet al. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9, 351 (2009).
  • McDevitt MR , ChattopadhyayD, KappelBJ, JaggiJS, SchiffmanSR, AntczakCet al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48, 1180–1189 (2007).
  • Kim JW , GalanzhaEI, ShashkovEV, MoonHM, ZharovVP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol.4, 688–694 (2009).
  • Moon HK , LeeSH, ChoiHC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano.3, 3707–3713 (2009).
  • de la Zerda A , LiuZ, BodapatiSet al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 10, 2168–2172 (2010).
  • Levi-Polyachenko NH , MerkelEJ, JonesBT, CarrollDL, Stewart JHt. Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol. Pharm.6, 1092–1099 (2009).
  • Mashal A , SitharamanB, LiXet al. Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. IEEE Trans. Biomed. Eng. 57, 1831–1834 (2010).
  • Ghosh S , DuttaS, GomesEet al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano. 3, 2667–2673 (2009).
  • Gannon CJ , CherukuriP, YakobsonBIet al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110, 2654–2665 (2007).
  • Vazquez E , PratoM. Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano.3, 3819–3824 (2009).
  • Kam NW , O‘ConnellM, WisdomJA, DaiH. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA102, 11600–11605 (2005).
  • Burke A , DingX, SinghRet al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl Acad. Sci. USA 106, 12897–12902 (2009).
  • Lee C , HongC, KimH, KangJ, ZhengHM. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy. Photochem. Photobiol.86, 981–989 (2010).
  • Li F , SonDI, ChoSH, KimTW. Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot-multi-walled carbon nanotube nanocomposites. Nanotechnology20(18), 185202 (2009).
  • Cui D , PanB, ZhangHet al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal. Chem. 80, 7996–8001 (2008).
  • Schulz-Drost C , SgobbaV, GerhardsCet al. Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 6425–6429 (2010).
  • Banerjee S , WongSS. In situ quantum dot growth on multiwalled carbon nanotubes. J. Am. Chem. Soc.125, 10342–10350 (2003).
  • Kang H , ClarkeML, TangJet al. Multimodal, nanoscale, hyperspectral imaging demonstrated on heterostructures of quantum dots and DNA-wrapped single-wall carbon nanotubes. ACS Nano. 3, 3769–3775 (2009).
  • Lim X , XuH, ChewYHet al. Nanoparticle fractionation using an aligned carbon nanotube array. Nanotechnology 21(29), 295702 (2010).
  • Li F , SonDI, KimTW, RyuE, KimSW. Carrier transport mechanisms of bistable memory devices fabricated utilizing core-shell CdSe/ZnSe quantum-dot/multi-walled carbon nanotube hybrid nanocomposites. Nanotechnology20(8), 085202 (2009).
  • Li F , SonDI, ChoSH, KimWT, KimTW. Flexible photovoltaic cells fabricated utilizing ZnO quantum dot/carbon nanotube heterojunctions. Nanotechnology20(15), 155202 (2009).
  • Jeong S , ShimHC, KimS, HanCS. Efficient electron transfer in functional assemblies of pyridine-modified NQDs on SWNTs. ACS Nano.4, 324–330 (2010).
  • Hwang SH , MoorefieldCN, WangPet al. Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 7505–7509 (2006).
  • Engtrakul C , KimYH, NedeljkovicJMet al. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes. J. Phys. Chem. B 110, 25153–25157 (2006).
  • Qian H , LuJQ. Electronic transport properties of coupled quantum dots on carbon nanotubes. J. Nanosci. Nanotechnol.10, 5346–5349 (2010).
  • Lim X , ZhuY, CheongFC, HanafiahNM, ValiyaveettilS, SowCH. Multicolored carbon nanotubes: decorating patterned carbon nanotube microstructures with quantum dots. ACS Nano.2, 1389–1395 (2008).
  • Llarena I , RomeroG, ZioloRF, MoyaSE. Carbon nanotube surface modification with polyelectrolyte brushes endowed with quantum dots and metal oxide nanoparticles through in situ synthesis. Nanotechnology21(5), 055605 (2010).
  • Fei Q , XiaoD, ZhangZ, HuanY, FengG. A novel silica-coated multiwall carbon nanotube with CdTe quantum dots nanocomposite. Spectrochim. Acta A Mol. Biomol. Spectrosc.74, 597–601 (2009).
  • Ding SN , XuJJ, ChenHY. Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem. Commun. (Camb.)3631–3633 (2006).
  • Du D , ChenW, ZhangW, LiuD, LiH, LinY. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosens. Bioelectron.25, 1370–1375 (2010).
  • Dutta M , JanaS, BasakD. Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes. Chemphyschem.11, 1774–1779 (2010).
  • Bottini M , CerignoliF, DawsonMI, MagriniA, RosatoN, MustelinT. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules7, 2259–2263 (2006).
  • Campbell JF , TessmerI, ThorpHH, ErieDA. Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. J. Am. Chem. Soc.130, 10648–10655 (2008).
  • Tang L , ZhuY, YangX, SunJ, LiC. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect. Biosens. Bioelectron.24, 319–323 (2008).
  • Tu Y , XuQ, ZouQJ, YinZH, SunYY, ZhaoYD. Electrochemical behavior of levodopa at multi-wall carbon nanotubes-quantum dots modified glassy carbon electrodes. Anal. Sci.23, 1321–1324 (2007).
  • Jia N , LianQ, ShenH, WangC, LiX, YangZ. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett.7, 2976–2980 (2007).
  • Didenko VV , BaskinDS. Horseradish peroxidase-driven fluorescent labeling of nanotubes with quantum dots. Biotechniques40, 295–302 (2006).
  • Kang HG , TokumasuF, ClarkeMet al. Probing dynamic fluorescence properties of single and clustered quantum dots toward quantitative biomedical imaging of cells. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 48–58 (2010).
  • Jia N , LianQ, TianZ, DuanX, YinM, JingLet al. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes. Nanotechnology 21(4), 045606 (2010).
  • Jie G , LiL, ChenC, XuanJ, ZhuJJ. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens. Bioelectron.24, 3352–3358 (2009).
  • Liu Q , LuX, LiJ, YaoX. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron.22, 3203–3209 (2007).
  • Olek M , BusgenT, HilgendorffM, GiersigM. Quantum dot modified multiwall carbon nanotubes. J. Phys. Chem. B110, 12901–12904 (2006).
  • Bottini M , MagriniA, DawsonMI, RosatoN, BergamaschiA, MustelinT. Noncovalently silylated carbon nanotubes decorated with quantum dots. Carbon N Y45, 673–676 (2007).
  • Si HY , LiuCH, XuH, WangTM, ZhangHL. Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids. Nanoscale Res. Lett.4, 1146–1152 (2009).
  • Zhou Z , KangH, ClarkeMLet al. Water-soluble DNA-wrapped single-walled carbon-nanotube/quantum-dot complexes. Small 5, 2149–2155 (2009).
  • Chen X , KisA, ZettlA, BertozziCR. A cell nanoinjector based on carbon nanotubes. Proc. Natl Acad. Sci. USA104, 8218–8222 (2007).
  • Zeng Y , TangC, WangH et al. A novel density-tunable nanocomposites of CdTe quantum dots linked to dendrimer-tethered multi-wall carbon nanotubes. Spectrochim. Acta A Mol. Biomol. Spectrosc.70, 966–972 (2008).
  • de la Zerda A , GambhirSS. Drug delivery: keeping tabs on nanocarriers. Nat. Nanotechnol.2, 745–746 (2007).
  • Mitchell DT , LeeSB, TrofinLet al. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124, 11864–11865 (2002).
  • Shao N , LuS, WickstromE, PanchapakesanB. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology18(31), 315101 (2007)

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.