737
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Plasmonics for Biology and Nanomedicine

, , &
Pages 751-770 | Published online: 25 May 2012

References

  • Kreibig U , VollmerM. Optical Properties of Metal Clusters. Springer-Verlag, Berlin Heidelberg, Germany (1995).
  • Stockman MI . Nanoplasmonics: the physics behind the applications. Phys. Today64(2), 39–44 (2011).
  • Stiles PL , DieringerJA, ShahNC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem.1, 601–626 (2008).
  • Seol Y , CarpenterAE, PerkinsTT. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett.31(16), 2429–2431 (2006).
  • Murray WA , BarnesWL. Plasmonic materials. Adv. Mater.19(22), 3771–3782 (2007).
  • Schwartzberg AM , ZhangJZ. Novel optical properties and emerging applications of metal nanostructures. J. Phys. Chem. C.112(28), 10323–10337 (2008).
  • Kelly KL , CoronadoE, ZhaoLL, SchatzGC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B.107(3), 668–677 (2003).
  • Jain PK , HuangX, El-SayedIH, El-SayadMA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics2(3), 107–118 (2007).
  • Harry AA . The promise of plasmonics. Sci. Am.296, 56–63 (2007).
  • Maier SA . Plasmonics: Fundamental and Applications. Springer Science, NY, USA (2007).
  • Zia R , SchullerJA, ChandranA, BrongersmaML. Plasmonics: the next chip-scale technology. Mater. Today9(7–8), 20–27 (2006).
  • Zayats AV , SmolyaninovII, MaradudinAA. Nano-optics of surface plasmon polaritons. Phys. Rep. Rev. Sect. Phys. Lett.408(3–4), 131–314 (2005).
  • Mayer KM , HaoF, LeeS, NordlanderP, HafnerJH. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology21(25), 255503 (2010).
  • Becker A , HesseniusC, LichaKet al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat. Biotechnol. 19(4), 327–331 (2001).
  • Barhoumi A , HuschkaR, BardhanR, KnightMW, HalasNJ. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem. Phys. Lett.482(4–6), 171–179 (2009).
  • Huschka R , ZuloagaJ, KnightMW, BrownLV, NordlanderP, HalasNJ. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc.133(31), 12247–12255 (2011).
  • Wijaya A , SchafferSB, PallaresIG, Hamad-SchifferliK. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano3(1), 80–86 (2009).
  • Nie S , EmorySR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science275(5303), 1102–1106 (1997).
  • Law WC , YongKT, BaevA, PrasadPN. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano5(6), 4858–4864 (2011).
  • Wong HMK , RighiniM, GatesJC, SmithPGR, PruneriV, QuidantR. On-a-chip surface plasmon tweezers. Appl. Phys. Lett.99(6), 061107 (2011).
  • Anker JN , HallWP, LyandresO, ShahNC, ZhaoJ, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat. Mater.7(6), 442–453 (2008).
  • Stewart ME , AndertonCR, ThompsonLBet al. Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008).
  • Liao HW , NehlCL, HafnerJH. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine (Lond).1(2), 201–208 (2006).
  • Zhao J , ZhangXY, YonzonCR, HaesAJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine (Lond).1(2), 219–228 (2006).
  • Mayer KM , HafnerJH. Localized surface plasmon resonance sensors. Chem. Rev.111(6), 3828–3857 (2011).
  • Mayer KM , LeeS, LiaoHet al. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2(4), 687–692 (2008).
  • Hirsch LR , StaffordRJ, BanksonJAet al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100(23), 13549–13554 (2003).
  • Elliott AM , StaffordRJ, SchwartzJet al. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med. Phys. 34(7), 3102–3108 (2007).
  • Stern JM , StanfieldJ, KabbaniW, HsiehJT, CadedduJA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol.179(2), 748–753 (2008).
  • Lowery AR , GobinAM, DayES, ShahKY, HalasNJ, WestJL. Immunonanoshells for selective photothermal therapy. Clin. Cancer Res.11(24), 9097S–9097S (2005).
  • Khlebtsov B , ZharovV, MelnikovA, TuchinV, KhlebtsovN. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology17(20), 5167–5179 (2006).
  • Huff TB , TongL, ZhaoY, HansenMN, ChengJX, WeiA. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond).2(1), 125–132 (2007).
  • Loo C , LoweryA, HalasN, WestJ, DrezekR. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett.5(4), 709–711 (2005).
  • Juan ML , RighiniM, QuidantR. Plasmon nano-optical tweezers. Nat. Photon.5(6), 349–356 (2011).
  • Fazal FM , BlockSM. Optical tweezers study life under tension. Nat. Photon.5(6), 318–321 (2011).
  • Alivisatos P . The use of nanocrystals in biological detection. Nat. Biotechnol.22(1), 47–52 (2004).
  • Wang J , BoriskinaSV, WangHY, ReinhardBM. Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling. ACS Nano5(8), 6619–6628 (2011).
  • Zheng YB , JensenL, YanW, WalkerTR, JuluriBK, HuangTJ. Chemically tuning the localized surface plasmon resonances of gold nanostructure arrays. J. Phys. Chem. C113(17), 7019–7024 (2009).
  • Lal S , LinkS, HalasNJ. Nano-optics from sensing to waveguiding. Nat. Photon.1(11), 641–648 (2007).
  • Cortie MB , McdonaghAM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev.111(6), 3713–3735 (2011).
  • Rycenga M , CobleyCM, ZengJet al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011).
  • Morton SM , SilversteinDW, JensenL. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev.111(6), 3962–3994 (2011).
  • Zheng YB , HuangTJ. Surface plasmons of metal nanostructure arrays: from nanoengineering to active plasmonics. J. Assoc. Lab. Automat.13(4), 215–226 (2008).
  • Zheng YB , JuluriBK, MaoXL, WalkerTR, HuangTJ. Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays. J. Appl. Phys.103(1), 014308 (2008).
  • Halas NJ , LalS, ChangWS, LinkS, NordlanderP. Plasmons in strongly coupled metallic nanostructures. Chem. Rev.111(6), 3913–3961 (2011).
  • Halas N . Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells. MRS Bull.30(5), 362–367 (2005).
  • Wiley B , SunYG, ChenJYet al. Shape-controlled synthesis of silver and gold nanostructures. MRS Bull. 30(5), 356–361 (2005).
  • Xia YN , HalasNJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull.30(5), 338–344 (2005).
  • Jones MR , OsbergKD, MacfarlaneRJ, LangilleMR, MirkinCA. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev.111(6), 3736–3827 (2011).
  • Hao QZ , ZengY, WangXDet al. Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process. Appl. Phys. Lett. 97(19), 193101 (2010).
  • Zou SL , SchatzGC. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J. Chem. Phys.121(24), 12606–12612 (2004).
  • Stockman MI . Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett.106(15), 156802 (2011).
  • Bergman DJ , StockmanMI. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett.90(2), 027402 (2003).
  • Cygan MT , DunbarTD, ArnoldJJet al. Insertion, conductivity, and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au{111}. J. Am. Chem. Soc. 120(12), 2721–2732 (1998).
  • Donhauser ZJ , PriceDW, TourJM, WeissPS. Control of alkanethiolate monolayer structure using vapor-phase annealing. J. Am. Chem. Soc.125(38), 11462–11463 (2003).
  • Smith RK , LewisPA, WeissPS. Patterning self-assembled monolayers. Prog. Surf. Sci.75(1–2), 1–68 (2004).
  • Love JC , EstroffLA, KriebelJK, NuzzoRG, WhitesidesGM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev.105(4), 1103–1169 (2005).
  • Weiss PS . Functional molecules and assemblies in controlled environments: formation and measurements. Acc. Chem. Res.41(12), 1772–1781 (2008).
  • Hohman JN , ClaridgeSA, KimM, WeissPS. Cage molecules for self-assembly. Mat. Sci. Eng. R.70(3–6), 188–208 (2010).
  • Saavedra HM , MullenTJ, ZhangPP, DeweyDC, ClaridgeSA, WeissPS. Hybrid strategies in nanolithography. Rep. Prog. Phys.73(3), 036501 (2010).
  • Vaish A , ShusterMJ, CheunkarS, SinghYS, WeissPS, AndrewsAM. Native serotonin membrane receptors recognize 5-hydroxytryptophan-functionalized substrates: enabling small-molecule recognition. ACS Chem. Neurosci.1(7), 495–504 (2010).
  • Klajn R , StoddartJF, GrzybowskiBA. Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem. Soc. Rev.39(6), 2203–2237 (2010).
  • Sagle LB , RuvunaLK, RuemmeleJA, Van Duyne RP. Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine (Lond).6(8), 1447–1462 (2011).
  • Willets KA , Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.58, 267–297 (2007).
  • Zheng YB , KiralyB, CheunkarS, HuangTJ, WeissPS. Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. Nano Lett.11(5), 2061–2065 (2011).
  • Ming T , ZhaoL, XiaoM, WangJ. Resonance-coupling-based plasmonic switches. Small6(22), 2514–2519 (2010).
  • Hsiao VKS , ZhengYB, JuluriBK, HuangTJ. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater.20(18), 3528–3532 (2008).
  • Hall WP , AnkerJN, LinY, ModicaJ, MrksichM, Van Duyne RP. A calcium-modulated plasmonic switch. J. Am. Chem. Soc.130(18), 5836–5837 (2008).
  • Dreaden EC , MackeyMA, HuangXH, KangB, El-SayedMA. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev.40(7), 3391–3404 (2011).
  • Yonzon CR , StuartDA, ZhangXY, McfarlandAD, HaynesCL, Van Duyne RP. Towards advanced chemical and biological nanosensors – an overview. Talanta67(3), 438–448 (2005).
  • Haes AJ , ChangL, KleinWL, Van Duyne RP. Detection of a biomarker for Alzheimer‘s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc.127(7), 2264–2271 (2005).
  • Wittenberg NJ , ImH, JohnsonTWet al. Facile assembly of micro- and nanoarrays for sensing with natural cell membranes. ACS Nano 5(9), 7555–7564 (2011).
  • Yonzon CR , JeoungfE, ZouSL, SchatzGC, MrksichM, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc.126(39), 12669–12676 (2004).
  • Sonnichsen C , ReinhardBM, LiphardtJ, AlivisatosAP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol.23(6), 741–745 (2005).
  • Reinhard BM , SheikholeslamiS, MastroianniA, AlivisatosAP, LiphardtJ. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA104(8), 2667–2672 (2007).
  • Liu N , HentschelM, WeissT, AlivisatosAP, GiessenH. Three-dimensional plasmon rulers. Science332(6036), 1407–1410 (2011).
  • Pryce IM , KelaitaYA, AydinK, AtwaterHA. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano5(10), 8167–8174 (2011).
  • Hao F , NehlCL, HafnerJH, NordlanderP. Plasmon resonances of a gold nanostar. Nano Lett.7(3), 729–732 (2007).
  • Bukasov R , Shumaker-ParryJS. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett.7(5), 1113–1118 (2007).
  • Larsson EM , AlegretJ, KallM, SutherlandDS. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett.7(5), 1256–1263 (2007).
  • Liu N , TangML, HentschelM, GiessenH, AlivisatosAP. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater.10(8), 631–636 (2011).
  • Liu N , WeissT, MeschMet al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10(4), 1103–1107 (2010).
  • Dondapati SK , SauTK, HrelescuC, KlarTA, StefaniFD, FeldmannJ. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano4(11), 6318–6322 (2010).
  • Dahlin AB , TegenfeldtJO, HookF. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem.78(13), 4416–4423 (2006).
  • Zhao J , DasA, ZhangX, SchatzGC, SligarSG, Van Duyne RP. Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc.128(34), 11004–11005 (2006).
  • Choi Y , ParkY, KangT, LeeLP. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat. Nanotechnol.4(11), 742–746 (2009).
  • Haes AJ , ZouSL, ZhaoJ, SchatzGC, Van Duyne RP. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc.128(33), 10905–10914 (2006).
  • Liu GL , LongYT, ChoiY, KangT, LeeLP. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods4(12), 1015–1017 (2007).
  • Choi YH , KangT, LeeLP. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett.9(1), 85–90 (2009).
  • Wiederrecht GP , WurtzGA, HranisavljevicJ. Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles. Nano Lett.4(11), 2121–2125 (2004).
  • Fofang NT , ParkTH, NeumannO, MirinNA, NordlanderP, HalasNJ. Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. Nano Lett.8(10), 3481–3487 (2008).
  • Ni W , AmbjornssonT, ApellSP, ChenH, WangJ. Observing plasmonic – molecular resonance coupling on single gold nanorods. Nano Lett.10(1), 77–84 (2009).
  • Ni W , YangZ, ChenH, LiL, WangJ. Coupling between molecular and plasmonic resonances in freestanding dye – gold nanorod hybrid nanostructures. J. Am. Chem. Soc.130(21), 6692–6693 (2008).
  • Ni W , ChenH, SuJ, SunZ, WangJ, WuH. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling. J. Am. Chem. Soc.132(13), 4806–4814 (2010).
  • Zheng YB , JuluriBK, JensenLLet al. Dynamically tuning plasmon-exciton coupling in arrays of nanodisk-J-aggregate complexes. Adv. Mater. 22(32), 3603–3607 (2010).
  • Anker JN , HallWP, LambertMPet al. Detection and identification of bioanalytes with high resolution LSPR spectroscopy and MALDI mass spectrometry. J. Phys. Chem. C. 113(15), 5891–5894 (2009).
  • Gardiner DJ . Practical Raman Spectroscopy. Graves PR (Ed.). Springer-Verlag, Berlin, Heidelberg, Germany (1989).
  • Lal S , GradyNK, KunduJ, LevinCS, LassiterJB, HalasNJ. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev.37(5), 898–911 (2008).
  • Kneipp J , KneippH, KneippK. SERS – a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev.37(5), 1052–1060 (2008).
  • Jackson JB , HalasNJ. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc. Natl Acad. Sci. USA101(52), 17930–17935 (2004).
  • Le Ru EC , GrandJ, SowIet al. A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. Nano Lett. 11(11), 5013–5019 (2011).
  • Alvarez-Puebla RA , Liz-MarzanLM. Traps and cages for universal SERS detection. Chem. Soc. Rev.41(1), 43–51 (2012).
  • Tamai N , MiyasakaH. Ultrafast dynamics of photochromic systems. Chem. Rev.100(5), 1875–1890 (2000).
  • Zheng YB , PaytonJL, ChungCHet al. Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments. Nano Lett. 11(8), 3447–3452 (2011).
  • Katayama I , KogaS, ShudoKet al. Ultrafast dynamics of surface-enhanced Raman scattering due to Au nanostructures. Nano Lett. 11(7), 2648–2654 (2011).
  • Estrada LC , GrattonE. 3D nanometer images of biological fibers by directed motion of gold nanoparticles. Nano Lett.11(11), 4656–4660 (2011).
  • Liu ZW , LeeH, XiongY, SunC, ZhangX. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science315(5819), 1686–1686 (2007).
  • Fang N , LeeH, SunC, ZhangX. Sub-diffraction-limited optical imaging with a silver superlens. Science308(5721), 534–537 (2005).
  • Huang B , BabcockH, ZhuangX. Breaking the diffraction barrier: super-resolution imaging of cells. Cell143(7), 1047–1058 (2010).
  • Huang B , WangW, BatesM, ZhuangX. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science319(5864), 810–813 (2008).
  • Novotny L , StranickSJ. Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem.57, 303–331 (2006).
  • Anger P , BharadwajP, NovotnyL. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett.96(11), 113002 (2006).
  • Eghlidi H , LeeKG, ChenXW, GotzingerS, SandoghdarV. Resolution and enhancement in nanoantenna-based fluorescence microscopy. Nano Lett.9(12), 4007–4011 (2009).
  • Pettinger B . Tip-enhanced Raman spectroscopy (TERS). Top. Appl. Phys.103, 217–240 (2006).
  • De Angelis F , DasG, CandeloroPet al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5(1), 67–72 (2010).
  • Bardhan R , LalS, JoshiA, HalasNJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res.44(10), 936–946 (2011).
  • Hartland GV . Optical studies of dynamics in noble metal nanostructures. Chem. Rev.111(6), 3858–3887 (2011).
  • Hu M , ChenJY, LiZYet al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094 (2006).
  • Averitt RD , WestcottSL, HalasNJ. Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B16(10), 1824–1832 (1999).
  • Xia Y , LiW, CobleyCMet al. Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 44(10), 914–924 (2011).
  • El-Sayed IH , HuangX, El-SayedMA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239(1), 129–135 (2006).
  • Huang XH , JainPK, El-SayedIH, El-SayedMA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine (Lond).2(5), 681–693 (2007).
  • Huang XH , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med. Sci.23(3), 217–228 (2008).
  • Lal S , ClareSE, HalasNJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res.41(12), 1842–1851 (2008).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41, 189–207 (2001).
  • Olivier JC . Drug transport to brain with targeted nanoparticles. NeuroRx2(1), 108–119 (2005).
  • Zheng YB , KiralyB, HuangTJ. Molecular machines drive smart drug delivery. Nanomedicine (Lond).5(9), 1309–1312 (2010).
  • Burakowska E , ZimmermanSC, HaagR. Photoresponsive crosslinked hyperbranched polyglycerols as smart nanocarriers for guest binding and controlled release. Small5(19), 2199–2204 (2009).
  • Kataoka K , ItakaK, NishiyamaN, YamasakiY, OishiM, NagasakiY. Smart polymeric micelles as nanocarriers for oligonucleotides and siRNA delivery. Nucleic Acids Symp. Ser. (Oxf.)49(1), 17–18 (2005).
  • Sawant RM , HurleyJP, SalmasoSet al. ‘SMART’ drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17(4), 943–949 (2006).
  • Leung SJ , KachurXM, BobnickMC, RomanowskiM. Wavelength-selective light-induced release from plasmon resonant liposomes. Adv. Funct. Mater.21(6), 1113–1121 (2011).
  • Luo YL , ShiaoYS, HuangYF. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano5(10), 7796–7804 (2011).
  • Lee SE , LeeLP. Nanoplasmonic gene regulation. Curr. Opin. Chem. Biol.14(5), 623–633 (2010).
  • Jones MR , MillstoneJE, GiljohannDA, SeferosDS, YoungKL, MirkinCA. Plasmonically controlled nucleic acid dehybridization with gold nanoprisms. Chemphyschem10(9–10), 1461–1465 (2009).
  • Lee SE , LiuGL, KimF, LeeLP. Remote optical switch for localized and selective control of gene interference. Nano Lett.9(2), 562–570 (2009).
  • Moffitt JR , ChemlaYR, SmithSB, BustamanteC. Recent advances in optical tweezers. Annu. Rev. Biochem.77, 205–228 (2008).
  • Chiou PY , OhtaAT, WuMC. Massively parallel manipulation of single cells and microparticles using optical images. Nature436(7049), 370–372 (2005).
  • Shi JJ , AhmedD, MaoX, LinSCS, LawitA, HuangTJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip9(20), 2890–2895 (2009).
  • Won R , AshkinA. How it all began. Nat. Photon.5(6), 316–317 (2011).
  • Claridge SA , SchwartzJJ, WeissPS. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano5(2), 693–729 (2011).
  • Bryant Z , StoneMD, GoreJ, SmithSB, CozzarelliNR, BustamanteC. Structural transitions and elasticity from torque measurements on DNA. Nature424(6946), 338–341 (2003).
  • Guydosh NR , BlockSM. Direct observation of the binding state of the kinesin head to the microtubule. Nature461(7260), 125–128 (2009).
  • Novotny L , BianRX, XieXS. Theory of nanometric optical tweezers. Phys. Rev. Lett.79(4), 645–648 (1997).
  • Miao XY , LinLY. Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. Opt. Lett.32(3), 295–297 (2007).
  • Grigorenko AN , RobertsNW, DickinsonMR, ZhangY. Nanometric optical tweezers based on nanostructured substrates. Nat. Photon.2(6), 365–370 (2008).
  • Juan ML , GordonR, PangYJ, EftekhariF, QuidantR. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys.5(12), 915–919 (2009).
  • De Abajo FJGI . Light transmission through a single cylindrical hole in a metallic film. Opt. Express10(25), 1475–1484 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.