467
Views
0
CrossRef citations to date
0
Altmetric
Review

Tailoring Polymeric Micelles to Optimize Delivery to Solid Tumors

, &
Pages 1235-1252 | Published online: 30 Aug 2012

References

  • Lipinski CA . Drug-like properties and the causes of poor solubility and poor permeability. J. Pharm. Tox. Meth.44, 235–249 (2000).
  • Croy SR , KwonGS. Polymer micelle for drug delivery. Curr. Pharm. Design12, 4669–4684 (2006).
  • Hatefi A , KnightD, AmsdenB. A biodegradable injectable thermoplastic for localized camptothecin delivery. J. Pharm. Sci.93, 1195–1204 (2004).
  • Kwon GS , KataokaK. Block copolymer micelles as long circulating drug vehicles. Adv. Drug Deliv. Rev.16, 295–309 (1995).
  • Lukyanov AN , TorchilinVP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug. Deliv. Rev.59, 1273–1289 (2004).
  • Ataman-Onal Y , MunierS, GanéeAet al. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J. Control. Release 112, 175–185 (2006).
  • He L , WangGL, ZhangQ. An alternative paclitaxel microemulsion formulation: hypersensitivity evaluation and pharmacokinetic profile. Int. J. Pharm.250, 45–50 (2003).
  • Menjoge AR , KannanRM, TomaliaDA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today15, 171–185 (2010).
  • Ibrahim NK , DesaiN, LeghaSet al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8, 1038–1044 (2002).
  • Alexis F , PridgenE, MolnarLK, FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5, 505–515 (2008).
  • Win KY , FengSS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials15, 2713–2722 (2005).
  • Scheinberg DA , VillaCH, EscorciaFE, McDevittMR. Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol.7, 266–276 (2010).
  • Kwon G , SuwaS, YokoyamaM, OkanoT, SakuraiY, KataokaK. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxde-aspartate) block copolymer-adriamycin conjugates. J. Control. Release29, 17–23 (1994).
  • Kakizawa K , KataokaK. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev.54, 203–222 (2002).
  • Ferrari M . Cancer nanotechnology: opportunities and challenges Nat. Rev. Cancer5, 161–171 (2005).
  • Yokoyama M , MiyauchiM, YamadaNet al. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 50, 1693–1700 (1990).
  • Kataoka K , HaradaA, NagasakiY. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug. Deliv. Rev.41, 113–131 (2001).
  • Rapoport N . Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci.32, 962–990 (2007).
  • Akimoto J , NakayamaM, SakikK, OkanoT. Temperature-induced intracellular uptake of thermoresponsive polymeric micelles. Biomacromolecules10, 1331–1336 (2009).
  • Kim TY , KimDW, ChungJYet al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004).
  • Nasongkla N , BeyE, RenJet al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery system. Nano Lett. 6, 2427–2430 (2006).
  • Li W , LiJF, GaoJet al. The fine-tuning thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 32, 3832–3844 (2011).
  • Nakayama M , OkanoT. Unique thermoresponsive polymeric micelle behavior via cooperative polymer corona phase transitions. Macromolecules41, 504–507 (2008).
  • Opanasopit P , YokoyamaM, WatanabeM, KawanoK, MaitaniY, OkanoT. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm. Res.21, 2001–2008 (2004).
  • Gaucher G , DufesneMH, SantVP, KangN, MaysingerD, LerouxJC. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release109, 169–188 (2005).
  • Kabanov AV , NazarovaIR, AstafievaIVet al. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 28, 2303–2314 (1995).
  • Zhao J , AllenC, EisenbergA. Partitioning of pyrene between crew cut block copolymer micelles and H2O/DMF solvent mixtures. Macromolecules20, 7143–7150 (1997).
  • Batrakova E , LeeS, LiS, VenneA, AlakhoV, KabanovA. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm. Res.16, 1373–1379 (1999).
  • Alexander C . Convergence of synthetic and natural polymers: next generation nanomedicines? Nanomedicine (Lond.)3, 749–751 (2008).
  • McCormick CL , LoweAB. Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc. Chem. Res.37, 312–325 (2004).
  • Thang SH , ChongYK, MayadunneRTA, MoadG, RizzardoE. A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Lett.40, 2435–2438 (1999).
  • Sui K , ZhaoX, WuZ, XiaY, LiangH, LiY. Synthesis, rapid responsive thickening, and self-assembly of brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) in aqueous solutions. Langmuir28, 153–160 (2012).
  • Li X , QianY, LiuTet al. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 32, 6595–6605 (2011).
  • Soo PL , LuoL, MaysingerD, EisenbergA. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-blcok-poly(ethylene oxide) micelles: implications for drug delivery. Langmuir18, 9996–10004 (2002).
  • Teraoka I . Polymer Solution. John Wiley & Sons, Inc., NY, USA, 69–166 (2002).
  • Nagarajan R . Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir18, 31–38 (2002).
  • Loverde SM , KleinML, DischerDE. Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv. Mater. doi: 10.1002/adma.201103192 (2011) (Epub ahead of print).
  • Kim Y , DalhaimerP, ChristianDA, DischerDE. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology16, S484–S8491 (2005).
  • Zheng C , QiuL, YaoX, ZhuK. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation. Int. J. Pharm.373, 133–140 (2009).
  • Hadjichristidis N , PispasS, FloudasG. Block Copolymers, Synthesis Strategies, Physical Properties and Applications. John Wiley and Sons, NJ, USA, Chapters 11–13 (2003).
  • Khougaz K , ZhongXF, EisenbergA. Aggregation and critical micelle concentrations of polystyrene-b-poly(sodium acrylate) and polystyrene-b-poly(acrylic acid) micelles in organic media. Macromolecules29, 3937–3949 (1996).
  • Quina FH , AlonsoEO, FarahJPS. Incorporation of nonionic solutes into aqueous micelles: a linear solvation frees energy relationship analysis. J. Phys. Chem.99, 11708–11714 (1995).
  • Letchford K , LigginsR, BurtH. Solubilization of hydrophobic drugs by methoxy poly(ethyleneglycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J. Pharm. Sci.97, 1179–1190 (2008)
  • Li W , NakayamaM, OkanoT. Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles. Polymer52, 3783–3790 (2011).
  • Kim S , ShiY, KimJ, ParkK, ChengJ. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability and micelle-cell interaction. Expert Opin. Drug Deliv.7(1), 49–62 (2010).
  • Halioglu T , BaharI, ErmanB, MatticeWL. Mechanisms of the exchange of diblock copolymers between dynamic equilibrium. Macromolecules29, 4764–4771 (1996).
  • Kwon G , OkanoT. Soluble self-assembled block copolymers for drug delivery. Pharm. Res.16, 597–600 (1999).
  • Nwose EU . Whole blood viscosity assessment issues I: extrapolation chart and reference values. North Am. J. Med. Sci.2, 165–169 (2010).
  • Zhang C , QuG, SunYet al. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfatechitosan micelles loaded with paclitxel. Biomaterials 29, 1233–1241 (2008).
  • Photos PJ , BacakovaL, DischerB, BatesFS, DischerDE. Polymer vesicles in vivo: correlations with PEG molecular weight. J. Control. Release90, 323–334 (2003).
  • Lee JS , FeijenJ. Polymersomes for drug delivery: design, formation and characterization. J. Control. Release161(2), 473–483 (2011).
  • Sharp JM , DickinsonRB. Direct evaluation of DLVO theory for predicting long-range forces between a yeast cell and a surface. Langmuir21(18), 8198–8203 (2005).
  • Israelachvili J , WennerströmH. Role of hydration and water structure in biological and colloid interactions. Nature379, 219–225 (1996).
  • Brown JM , GiacciaAJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res.58, 1408–1416 (1998).
  • Trédan O , GalmariniCM, PatelK, Tannock lF. Drug resistance and the solid tumor microenviroment. J. Natl Cancer Inst.99, 1141–1154 (2007).
  • Yahara T , KogaT, YoshidaS, NakagawaS, GeguchiH, ShirouzuK. Relationship between microvessel density and thermographic hot area in breast cancer. Surg. Today33, 243–248 (2003).
  • Jain RK . Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl Cancer Inst.81, 570–576 (1989).
  • Maeda H , SawaT, KonnoT. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect insolid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release74, 47–61 (2001).
  • Jain RK , StylianopoulosT. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol.7, 653–664 (2010).
  • Kabanov AV , NazarovaIR, AstafievaIVet al. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b- oxypropylene-b- oxyethylene) solutions. Macromolecules 28, 2303–2314 (1995).
  • Torchillin V . Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm.71, 431–444 (2009).
  • Nakayama M , OkanoT, MiyazakiT, KohoriF, SakaiK, YokoyamaM. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release115, 46–56 (2006).
  • Hobbs S , MonskeyW, YuanFet al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).
  • Bae Y , NishiyamaN, FukushimaS, KoyamaH, YasuhiroM, KataokaK. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconj. Chem.16, 122–130 (2005).
  • Schmunk C , RehmT, KleinK, GrohnF. Formation of vesicular structures via the self-Assembly of a flexible bis-zwitterion in DMSO. Angew. Chem. Int. Ed.46, 1693–1697 (2007).
  • Nishiyama N , BaeY, MiyataK, FukushimaS, KataokaK. Smart polymeric micelles for gene and drug delivery. Drug Discov. Today Tech.2, 21–26 (2005).
  • Lee ES , NaK, BaeYH. Super pH-sensitive multifunctional polymer micelles. Nano Lett.5, 325–329 (2005).
  • Lee ES , GaoZ, BaeYH. Recent progress in tumor pH targeting nanotechnology. J. Control. Release146, 264–275 (2010).
  • Du JZ , TangYP, LewisAL, ArmesSP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc.127, 17982–17983 (2005).
  • Nakayama M , OkanoT. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules6, 2320–2327 (2005).
  • Nakayama M , OkanoT, MiyazakiT, KohoriF, SakaiK, YokoyamaM. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release115, 46–56 (2006).
  • Nakayama M , KawaharaY, AkimotoJ, KanazawaH, OkanoT. pH-induced phase transition control of thermoresponsive nano-micelles possessing outermost surface sulfonamide moieties. Colloids Surf. B Biointerfaces99, 12–29 (2011).
  • Ayano E , KarakiM, IshiharaT, KanazawaH, OkanoT. Poly (N-isopropylacrylamide)-PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake. Colloids Surf. B Biointerfaces99, 67–73 (2011).
  • Akimoto J , NakayamaM, SakaiK, OkanoT. Thermally controlled intracellular uptake system of polymeric micelles possessing poly(N-isopropylacrylamide)-based outer coronas. Mol. Pharm.7, 926–935 (2010).
  • Nakayama M , ChungJE, MiyazakiT, YokoyamaM, SakaiK, OkanoT. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. React. Funct. Polym.67, 1398–1407 (2007).
  • Power-Billard KN , SpontakRJ, MannersI. Redox-active organometallic vesicles: aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block. Angew. Chem. Int. Ed.43, 1260–1264 (2004).
  • Thorpe PE , WallancePM, KnowlesPPet al. New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res. 15, 5924–5931 (1987).
  • Takae S , MiyataK, ObaMet al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 130(18), 6001–6009 (2008).
  • Napoli A , BoerakkerMJ, TirelliN, NolteRJM, SommerdijkN, HubbellJA. Glucose- oxidase based self-destructing vesicles. Langmuir20, 3487–3491 (2004).
  • Tong X , WangG, SolderaA, ZhaoY. How can azobenzene block copolymer vesicles be dissociated and reformed by light? J. Phys. Chem. B109, 20281–20287 (2005).
  • Lee H , WuW, OhJKet al. Light-induced reversible formation of polymeric micelles. Angew. Chem. Int. Ed. 46, 2453–2457 (2007).
  • Klajn R , BishopKJM, GrzybowskiBA. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA104(25), 10305–10309 (2007).
  • Xu L , HuangCC, HuangWet al. Systemic tumor-targeted gene delivery by antitransferrin receptor scFv-immunoliposomes, Mol. Cancer Ther. 1, 337–346 (2002).
  • Lundberg M , WikströmS, JohanssonM. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther.8, 143–150 (2003).
  • Kedar U , PhutaneP, ShidhayeS, KadamV. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine6, 714–729 (2010).
  • Wagner V , DullarrtA, BockAK, ZweckA. The emerging nanomedicine landscape. Nat. Biotech.24, 1211–1217 (2006).
  • Shaunak S , GodwinA, ChoiJWet al. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat. Chem. Bio. 2, 312–313 (2006).
  • Wang T , UpponiJR, TorchilinVP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int. J. Pharm.427, 3–20 (2012).
  • Nakayama M , YamadaN, KumashiroY, KanazawaH, YamatoM, OkanoT. Thermoresponsive poly(N-isopropylacrylamide)-based block copolymer coating for optimizing cell sheet fabrication. Macromol. Biosci.12(6), 751–760(2012).
  • Chiappetta DA , HochtC, TairaC, SosnikA. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine5, 11–23 (2010).
  • Mohanty C , AcharyaS, MohantyAK, DilnawazF, SahooSK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine5, 433–449 (2010).
  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumor tropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46, 6387–6392 (1986).
  • Aliabadi HM , ShahinM, BrocksDR, LavasanifarA. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin. Pharmacokinet.47, 619–634 (2008).
  • Li Y , XiaoK, LuoJ, LeeJ, PanS, LamKS. A novel size-tunable nanocarrier system for targeted anticancer drug delivery. J. Control. Release15, 314–323 (2010).
  • Cabral H , MatsumotoY, MizunoKet al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).
  • Torchilin VP . Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release73, 137–172 (2001).
  • Park YJ , LeeJY, ChangYSet al. Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials 23, 873–879 (2002).
  • Aliabadi HM , BrocksDR, LavasanifarA. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials26, 7251–7259 (2005).
  • Kim SC , KimDW, ShimYHet al.: In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release72, 191–202 (2001).
  • Novakova K , LaznicekM, RypacekF, MachovaL. Pharmacokinetics and distribution of 125I-PLA-b-PEO block copolymers in rats. Pharm. Dev. Technol.8, 153–161 (2003).
  • Lee H , FongeH, HoangB, ReillyRM, AllenC. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol. Pharm.7, 1195–1208 (2010).
  • Litzinger DC , BuitingAM, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim. Biophys. Acta1190(1), 99–107 (1994).
  • Yu SS , LauCM, ThomasSNet al. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int. J. Nanomed. 7, 799–813 (2012).
  • Meng H , XueM, XiaTet al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5, 4131–4144 (2011).
  • Nakase I , KonishiY, UedaM, SajiH, FutakiS. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J. Control. Release159, 181–188 (2012).
  • Hu Z , LuoF, PanYet al. Arg-Gly-Asp (RGD) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery. J. Biomed. Mater. Res. A. 85, 797–807 (2008).
  • Crownover E , DuvallCL, ConvertineA, HoffmanAS, StaytonPS. RAFT-synthesized graft copolymers that enhance pH-dependent membrane destabilization and protein circulation times. J. Control. Release155, 167–174 (2011).
  • Mosqueira VC , LegrandP, MorgatJLet al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm. Res. 18, 1411–1419 (2001).
  • Lian H , SunJ, YuYPet al. Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery. Int. J. Nanomedicine 6, 3323–3334 (2011).
  • Li W , ZhaoH, LiHet al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 33(21), 5349–5362(2012).
  • Vachutinsky Y , ObaM, MiyataKet al. Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J. Control. Release 149, 51–57 (2011).
  • Huang J , BuL, XieJet al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010).
  • Fonge H , HuangH, ScollardD, ReillyRM, AllenC. Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles. J. Control. Release157, 366–374 (2012).
  • Lee JS , AnkoneM, PietersE, SchiffelersRM, HenninkWE, FeijenJ. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J. Control. Release155, 282–288 (2011).
  • Koo AN , MinKH, LeeHJet al. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials 33, 1489–1499 (2012).
  • Talelli M , ImanM, VarkouhiAKet al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 31, 7797–7804 (2010).
  • Wang J , PelletierM, ZhangH, XiaH, ZhaoY. High-frequency ultrasound-responsive block copolymer micelle. Langmuir25, 13201–13205 (2009).
  • Matsumura Y , KataokaK. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci.100, 572–579 (2009).
  • Zhang L , GuFX, ChanJM, WangAZ, LangerRS, FarokhzadOC. Nanoparticles in mecicine: therapeutic applications and developments. Clin. Pharmacol. Ther.83, 761–769 (2008).
  • Gaucher G , SatturwarP, JonesMC, FurtosA, LerouxJC. Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm.76, 147–158 (2010).
  • Duncan R . The dawning ear of polymer therapeutics. Nat. Rev. Drug. Discov.2, 347–360 (2003).
  • Plummer R , WilsonRH, CalvertHet al. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer. 104, 593–598 (2011).
  • Savic R , LuoL, EisenbergA, MaysingerD. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science300, 615–618 (2003).
  • Davis ME , CehnZ, ShinD. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7, 771–782 (2008).
  • Tian HY , DengC, LinHet al. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 26, 4209–4217 (2005).
  • Scheinberg DA , VillaCH, EscorciaFE, McDevittMR. Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol.7, 266–276 (2010).
  • Frokjaer S , OtzenDE. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov.4, 298–306 (2005).
  • Li W , FengS, GuoY. Block copolymer for nanomedicine. Nanomedicine7, 169–172 (2012).
  • Matsumura Y . Polymeric micellar delivery systems in oncology. Jpn J. Clin. Oncol.38, 793–802 (2008).
  • Kim TY , KimDW, ChungJYet al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004).
  • Park JW , KirpotinDB, HongKet al. Tumor targeting using anti-her2 immunoliposomes. J. Control. Release 74, 95–113 (2001).
  • Stuart MAC , HuckWTS, GenzerJet al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).
  • Duncan R . Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6, 688–701 (2006).
  • Mastrobattista E , van der Aa MA, Hennink WE, Crommelin DJA. Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discov.5, 115–121 (2006).
  • Chan AS , ChenCH, HuangCM, HsiehMF. Regulation of particle morphology of pH-dependent poly(ε-caprolactone)-poly(γ-glutamic acid) micellar nanoparticles to combat breast cancer cells. J. Nanosci. Nanotechnol.10, 6283–6297 (2010).
  • Gong J , HuoM, ZhouJet al. Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles. Int. J. Pharm. 376, 161–168 (2009).
  • Li H , HuoM, ZhouJet al. Enhanced oral absorption of paclitaxel in N-deoxycholic acid-N, O-hydroxyethyl chitosan micellar system. J. Pharm. Sci. 99, 4543–4553(2010).
  • Ngawhirunpat T , WonglertnirantN, OpanasopitPet al. Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin. Colloids Surf B Biointerfaces 74, 253–259 (2009).
  • Qu G , YaoZ, ZhangC, WuX, PingQ. PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur. J. Pharm. Sci.37, 98–105 (2009).
  • Kulthe SS , InamdarNN, ChoudhariYM, ShirolikarSM, BordeLC, MouryaVK. Mixed micelle formation with hydrophobic and hydrophilic pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B Biointerfaces88, 691–696 (2011).
  • Du YZ , WengQ, YuanH, HuFQ. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano4, 6894–6902 (2010).
  • Xiong MP , YanezJA, RemsbergCMet al. Formulation of a geldanamycin prodrug in mPEG-b-PCL micelles greatly enhances tolerability and pharmacokinetics in rats. J. Control. Release 129, 33–40 (2008).
  • Pierri E , AvgoustakisK. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J. Biomed. Mater. Res. A.75, 639–647 (2005).
  • Gu PF , XuH, SuiBWet al. Polymeric micelles based on poly(ethylene glycol) block poly(racemic amino acids) hybrid polypeptides: conformation-facilitated drug-loading behavior and potential application as effective anticancer drug carriers. Int. J. Nanomed. 7, 109–122 (2012).
  • Satturwar P , EddineMN, RavenelleF, LerouxJC. pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl[meth]acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. Eur. J. Pharm. Biopharm.65, 379–387 (2007).
  • Wang B , JiangW, YanHet al. Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int. J. Nanomed. 6, 1443–1451 (2011).
  • Kwon GS , NaitoM, YokoyamaM, OkanoT, SakuraiY, KataokaK. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res.12, 192–195 (1995).
  • Dabholkar RD , SawantRM, MongaytDA, DevarajanPV, TorchilinVP. Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int. J. Pharm.315, 148–157 (2006).
  • Wang HF , JiaHZ, ChengSX, FengJ, ZhangXZ, ZhuoRX. PEG-stabilized micellar system with positively charged polyester core for fast pH-responsive drug release. Pharm. Res.29(6), 1582–1594 (2012).
  • Yu SY , AzzamT, RouillerI, EisenbergA. ‘Breathing’ vesicles. J. Am. Chem. Soc.131, 10557–10566 (2009).
  • Giacomelli C , Le Men L, Borsali R et al. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules7, 817–828 (2006).
  • Napoli A , BoerakkerMJ, TirelliNet al. Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 20, 3487–3491 (2004).
  • Cerritelli S , VellutoD, HubbellJA. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery, Biomacromolecules8, 1966–1972 (2007).
  • Cabral H , NakanishiM, KumagaiM, JangWD, NishiyamaN, KataokaK. A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles. Pharm. Res.26, 82–92 (2009).
  • Krack M , HohenbergH, KornowskiA, LindnerP, WellerH, ForsterS. Nanoparticleloaded magnetophoretic vesicles. J. Am. Chem. Soc.130, 7315–7320 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.