440
Views
0
CrossRef citations to date
0
Altmetric
Review

Tapping The Potential of Quantum Dots for Personalized Oncology: Current Status and Future Perspectives

, , , , &
Pages 411-428 | Published online: 02 Mar 2012

References

  • Jemal A , BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics. CA Cancer J. Clin.61, 69–90 (2011).
  • Smith RA , CokkinidesV, BrooksD, SaslowD, ShahM, BrawleyOW. Cancer screening in the United States, 2011: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J. Clin.61, 8–30 (2011).
  • Stewart DJ , KurzrockR. Cancer: the road to Amiens. J. Clin. Oncol.27, 328–333 (2009).
  • Cance WG . Society of surgical oncology presidential address: the war on cancer – shifting from disappointment to new hope. Ann. Surg. Oncol.17, 1971–1978 (2010).
  • Marshall E . Cancer research and the $90 billion metaphor. Science331, 1540–1541 (2011).
  • Jemal A , SiegelR, XuJ, WardE. Cancer statistics, 2010. CA Cancer J. Clin.60, 277–300 (2010).
  • Sankaranarayanan R , SwaminathanR, BrennerHet al. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol. 11, 165–173 (2010).
  • Marusyk A , PolyakK. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta1805(1), 105–117 (2010).
  • Hanash SM , BaikCS, KallioniemiO. Emerging molecular biomarkers – blood-based strategies to detect and monitor cancer. Nat. Rev. Clin. Oncol.8, 142–150 (2011).
  • Weissleder R . Molecular imaging in cancer. Science312, 1168–1171 (2006).
  • Weissleder R , PittetMJ. Imaging in the era of molecular oncology. Nature452, 580–589 (2008).
  • van der Meel R , GallagherWM, OliveiraS, O‘ConnorAE, SchiffelersRM, ByrneAT. Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov. Today15, 102–114 (2010).
  • Glunde K , PathakAP, BhujwallaZM. Molecular-functional imaging of cancer: to image and imagine. Trends Mol. Med.13, 287–297 (2007).
  • Harris TJ , McCormickF. The molecular pathology of cancer. Nat. Rev. Clin. Oncol.7, 251–265 (2010).
  • Ludwig JA , WeinsteinJN. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5, 845–856 (2005).
  • Duffy MJ , CrownJ. A personalized approach to cancer treatment: how biomarkers can help. Clin. Chem.54, 1770–1779 (2008).
  • Wistuba II , GelovaniJG, JacobyJJ, DavisSE, HerbstRS. Methodological and practical challenges for personalized cancer therapies. Nat. Rev. Clin. Oncol.8, 135–141 (2011).
  • Phan JH , MoffittRA, StokesTHet al. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol. 27, 350–358 (2009).
  • Wang X , YangL, ChenZG, ShinDM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin.58, 97–110 (2008).
  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2, 751–760 (2007).
  • Torigian DA , HuangSS, HouseniM, AlaviA. Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J. Clin.57, 206–224 (2007).
  • Frangioni JV . New technologies for human cancer imaging. J. Clin. Oncol.26, 4012–4021 (2008).
  • Kim J , PiaoY, HyeonT. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev.38, 372–390 (2009).
  • Hong H , ZhangY, SunJ, CaiW. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today4, 399–413 (2009).
  • Cho EC , GlausC, ChenJ, WelchMJ, XiaY. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med.16, 561–573 (2010).
  • Farrell D , AlperJ, PtakK, PanaroNJ, GrodzinskiP, BarkerAD. Recent advances from the National Cancer Institute Alliance for nanotechnology in cancer. ACS Nano4, 589–594 (2010).
  • Singhal S , NieS, WangMD. Nanotechnology applications in surgical oncology. Annu. Rev. Med.61, 359–373 (2010).
  • Nie S , XingY, KimGJ, SimonsJW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.9, 257–288 (2007).
  • Ferrari M . Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer5, 161–171 (2005).
  • Michalet X , PinaudFF, BentolilaLAet al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
  • Chen C , ChenLD, ZhangZL, LiY. Advances in the application of quantum dots in tumor markers investigation. Chin. Germ. J. Clin. Oncol.7, 1079–1084 (2008).
  • Peng CW , LiY. Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J. Nanomater.676839, 1–11 (2010).
  • Zrazhevskiy P , GaoX. Multifunctional quantum dots for personalized medicine. Nano Today4, 414–428 (2009).
  • Zrazhevskiy P , SenaM, GaoX. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev.39, 4326–4354 (2010).
  • Smith AM , DaveS, NieS, TrueL, GaoX. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn.6(2), 231–244 (2006).
  • Resch-Genger U , Grabolle, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods5, 763–775 (2008).
  • Tholouli E , SweeneyE, BarrowE, ClayV, HoylandJ, ByersR. Quantum dots light up pathology. J. Pathol.216, 275–285 (2008).
  • Smith AM , DuanH, MohsAM, NieS. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev.60, 1226–1240 (2008).
  • Bentolila LA , EbensteinY, WeissS. Quantum dots for in vivo small-animal imaging. J. Nucl. Med.50, 493–496 (2009).
  • Kosaka N , McCannTE, MitsunagaM, ChoykePL, KobayashiH. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine5, 765–776 (2010).
  • Hilderbrand SA , WeisslederR. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol.14, 71–79 (2010).
  • He X , GaoJ, GambhirSS, ChengZ. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol. Med.16, 574–583 (2010).
  • Wang Y , ChenL. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine7, 385–402 (2011).
  • Byers RJ , HitchmanER. Quantum dots brighten biological imaging. Prog. Histochem. Cytochem.45, 201–237 (2011).
  • Wagner MK , LiF, LiJ, LiXF, LeXC. Use of quantum dots in the development of assays for cancer biomarkers. Anal. Bioanal. Chem.397, 3213–3224 (2010).
  • Rosenthal SJ , ChangJC, KovtunO, McBrideJR, TomlinsonID. Biocompatible quantum dots for biological applications. Chem. Biol.18, 10–24 (2011).
  • Medintz IL , MattoussiH, ClappAR. Potential clinical applications of quantum dots. Int. J. Nanomedicine3, 151–167 (2008).
  • Zhang H , YeeD, WangC. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine3, 83–91 (2008).
  • True LD , GaoX. Quantum dots for molecular pathology: their time has arrived. J. Mol. Diagn.9, 7–11 (2007).
  • Jamieson T , BakhshiR, PetrovaD, PocockR, ImaniM, SeifalianAM. Biological applications of quantum dots. Biomaterials28, 4717–4732 (2007).
  • Gao X , YangL, PetrosJA, MarshallFF, SimonsJW, NieS. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16, 63–72 (2005).
  • Algar WR , KrullUJ. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal. Bioanal. Chem.391, 1609–1618 (2008).
  • Xia Z , RaoJ. Biosensing and imaging based on bioluminescence resonance energy transfer. Curr. Opin. Biotechnol.20, 37–44 (2009).
  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science281, 2013–2016 (1998).
  • Chan WC , NieSM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281, 2016–2018 (1998).
  • Mankoff DA . A definition of molecular imaging. J. Nucl. Med.48, 18N–21N (2007).
  • Yang L , MaoH, WangYAet al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5, 235–243 (2009).
  • Yong KT , DingH, RoyIet al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3, 502–510 (2009).
  • Diagaradjane P , Orenstein-CardonaJM, Colon-CasasnovasNEet al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res. 14, 731–741 (2008).
  • Biju V , ItohT, IshikawaM. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev.39, 3031–3056 (2010).
  • Wang C , GaoX, SuX. In vitro and in vivo imaging with quantum dots. Anal. Bioanal. Chem.397, 1397–1415 (2010).
  • Akerman ME , ChanWC, LaakkonenP, BhatiaSN, RuoslahtiE. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA99, 12617–12621 (2002).
  • Gao XH , CuiYY, LevensonRM, ChungLW, NieS. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22, 969–976 (2004).
  • Gao XH , ChungLW, NieSM. Quantum dots for in vivo molecular and cellular imaging. Methods Mol. Biol.374, 135–146 (2007).
  • Cai W , ShinDW, ChenKet al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006).
  • Cai W , ChenK, LiZB, GambhirSS, ChenX. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med.48, 1862–1870 (2007).
  • Yu X , ChenL, LiKet al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J. Biomed. Opt. 12, 014008 (2007).
  • Yu X , ChenL, DengYet al. Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation. J. Fluoresc. 17, 243–247 (2007).
  • Chen LD , LiuJ, YuXFet al.: In vivo targeted imaging of hepatocellular carcinoma in nude mice using quantum dot probes. Chin. J. Pathol.36, 394–399 (2007).
  • Chen LD , LiuJ, YuXFet al. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 29, 4170–4176 (2008).
  • Kim S , LimYT, SolteszEGet al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).
  • Hama Y , KoyamaY, UranoY, ChoykePL, KobayashiH. Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res. Treat.103, 23–28 (2007).
  • Kobayashi H , HamaY, KoyamaYet al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 7, 1711–1716 (2007).
  • Kosaka N , OgawaM, SatoN, ChoykePL, KobayashiH. In vivo real-time, multicolor, quantum dot lymphatic imaging. J. Invest. Dermatol.129, 2818–2822 (2009).
  • Pons T , PicE, LequeuxNet al. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4, 2531–2538 (2010).
  • Erogbogbo F , YongKT, RoyIet al.: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano5, 413–423 (2011).
  • Chaffer CL , WeinbergRA. A perspective on cancer cell metastasis. Science331, 1559–1564 (2011).
  • Voura EB , JaiswalJK, MattoussiH, SimonSM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med.10, 993–998 (2004).
  • Lidke DS , NagyP, HeintzmannRet al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203 (2004).
  • Gonda K , WatanabeTM, OhuchiN, HiguchiH. In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J. Biol. Chem.285, 2750–2757 (2010).
  • Misra RD . Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine3, 271–274 (2008).
  • Tada H , HiguchiH, WanatabeTM, OhuchiN. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res.67, 1138–1144 (2007).
  • Nurunnabi M , ChoKJ, ChoiJS, HuhKM, LeeYK. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials31, 5436–5444 (2010).
  • Bagalkot V , ZhangL, Levy-NissenbaumEet al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007).
  • Weng KC , NobleCO, Papahadjopoulos-SternbergBet al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 8, 2851–2857 (2008).
  • Pan J , LiuY, FengSS. Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine5, 347–360 (2010).
  • Lu RM , ChangYL, ChenMS, WuHC. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials32, 3265–3274 (2011).
  • Ashley CE , CarnesEC, PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10, 389–397 (2011).
  • Muhammad F , GuoM, QiWet al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 133, 8778–8781 (2011).
  • Petrocca F , LiebermanJ. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol.29, 747–754 (2011).
  • Agrawal P , StrijkersGJ, NicolayK. Chitosan-based systems for molecular imaging. Adv. Drug Deliv. Rev.62, 42–58 (2010).
  • Tan WB , JiangS, ZhangY. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials28, 1565–1571 (2007).
  • Chen HH , HoYP, JiangX, MaoHQ, WangTH, LeongKW. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol. Ther.16, 324–332 (2008).
  • Yezhelyev MV , QiL, O‘ReganRM, NieS, GaoX. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc.130, 9006–9012 (2008).
  • Juzenas P , ChenW, SunYPet al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60, 1600–1614 (2008).
  • Yaghini E , SeifalianAM, MacRobertAJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine4, 353–363 (2009).
  • Biju V , MundayoorS, OmkumarRV, AnasA, IshikawaM. Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol. Adv.28, 199–213 (2010).
  • Triesscheijin M , BaasP, SchellensJH, StewartFA. Photodynamic therapy in oncology. Oncologist11, 1034–1044 (2006).
  • Ross JS , SlodkowskaEA, SymmansWF, PusztaiL, RavdinPM, HortobagyiGN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist14, 320–368 (2009).
  • Wu X , LiuH, LiuJet al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).
  • Yezhelyev MV , Al-HajjA, MorrisCet al.: In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv. Mater.19, 3146–3151 (2007).
  • Chen C , PengJ, XiaHSet al. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30, 2912–2918 (2009).
  • Chen C , PengJ, XiaHSet al. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology 21, 95101 (2010).
  • Chen C , XiaHS, GongYPet al. The quantitative detection of total HER2 load by quantum dots and the identification of a new subtype of breast cancer with different 5-year prognosis. Biomaterials 31, 8818–8825 (2010).
  • Chen C , SunSR, GongYPet al. Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials 32, 7592–7599 (2011).
  • Li R , DaiH, WheelerTMet al. Prognostic value of Akt-1 in human prostate cancer: a computerized quantitative assessment with quantum dot technology. Clin. Cancer Res. 15, 3568–3573 (2009).
  • Ghazani AA , LeeJA, KlostranecJet al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett. 6, 2881–2886 (2006).
  • Xing Y , ChaudryQ, ShenCet al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007).
  • Sweeney E , WardTH, GrayNet al. Quantitative multiplexed quantum dot immunohistochemistry. Biochem. Biophys. Res. Commun. 374, 181–186 (2008).
  • Huang D , PengX, SuLet al. Comparison and optimization of multiplexed quantum dot-based immunohistofluorescence. Nano Res. 3, 61–68 (2010).
  • Snyder EL , BaileyD, ShipitsinM, PolyakK, LodaM. Identification of CD44v6+/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest.89, 857–866 (2009).
  • Liu J , LauSK, VarmaVA, KairdolfBA, NieS. Multiplexed detection and characterization of rare tumor cells in Hodgkin‘s lymphoma with multicolor quantum dots. Anal. Chem.82, 6237–6243 (2010).
  • Frasco MF , ChaniotakisN. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal. Bioanal. Chem.396, 229–240 (2010).
  • Gill R , ZayatsM, WillnerI. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. Engl.47, 7602–7625 (2008).
  • Sun B , XieW, YiG, ChenD, ZhouY, ChengJ. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immunol. Methods249, 85–89 (2001).
  • Agrawal A , SatheT, NieS. Single-bead immunoassays using magnetic microparticles and spectral-shifting quantum dots. J. Agric. Food Chem.55, 3778–3782 (2007).
  • Zajac A , SongD, QianW, ZhukovT. Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf. B Biointerfaces58, 309–314 (2007).
  • Kerman K , EndoT, TsukamotoM, ChikaeM, TakamuraY, TamiyaE. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta71, 1494–1499 (2007).
  • Wang J , LiuG, WuH, LinY. Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small4, 82–86 (2008).
  • Cui D , PanB, ZhangHet al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal. Chem. 80, 7996–8001 (2008).
  • Gokarna A , JinLH, HwangJSet al. Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics 8, 1809–1818 (2008).
  • Kim YP , OhYH, OhE, KoS, HanMK, KimHS. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal. Chem.80, 4634–4641 (2008).
  • Xia Z , XingY, SoMK, KohAL, SinclairR, RaoJ. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal. Chem.80, 8649–8655 (2008).
  • Zhang B , LiangX, HaoLet al. Quantum dots/particle-based immunofluorescence assay: synthesis, characterization and application. J. Photochem. Photobiol. B 94, 45–50 (2009).
  • Soman C , GiorgioT. Sensitive and multiplexed detection of proteomic antigens via quantum dot aggregation. Nanomedicine5, 402–409 (2009).
  • Cheng AK , SuH, WangYA, YuHZ. Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal. Chem.81, 6130–6139 (2009).
  • Boeneman K , MeiBC, DennisAMet al. Sensing caspase-3 activity with quantum dot-fluorescent protein assemblies. J. Am. Chem. Soc. 131, 3828–3829 (2009).
  • Jokerst JV , RaamanathanA, ChristodoulidesNet al. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron. 24, 3622–3629 (2009).
  • Hu M , YanJ, HeYet al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 4, 488–494 (2010).
  • Cheng W , YanF, DingL, JuH, YinY. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal. Chem.82, 3337–3342 (2010).
  • Gu B , XuC, YangC, LiuS, WangM. ZnO quantum dot labeled immunosensor for carbohydrate antigen 19–19. Biosens. Bioelectron.26, 2720–2723 (2011).
  • Nelson NJ . Circulating tumor cells: will they be clinically useful? J. Natl Cancer Inst.102, 146–148 (2010).
  • Wang DS , HeJB, RosenzweigN, RosenzweigZ. Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett.4, 409–413 (2004).
  • Selvan ST , PatraPK, AngCY, YingJY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. Engl.46, 2448–2452 (2007).
  • Di Corato R , BigallNC, RagusaAet al. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano 5, 1109–1121 (2011).
  • Hsieh YH , LaiLJ, LiuSJ, LiangKS. Rapid and sensitive detection of cancer cells by coupling with quantum dots and immunomagnetic separation at low concentrations. Biosens. Bioelectron.26, 4249–4252 (2011).
  • Xie HY , ZuoC, LiuYet al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 1, 506–509 (2005).
  • Xie HY , XieM, ZhangZLet al. Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjug. Chem. 18, 1749–1755 (2007).
  • Song EQ , WangGP, XieHYet al. Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres. Clin. Chem. 53, 2177–2185 (2007).
  • Song EQ , HuJ, WenCYet al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5, 761–770 (2011).
  • Stroh M , ZimmerJP, DudaDGet al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 11, 678–682 (2005).
  • Estrada CR , SalangaM, BielenbergDRet al. Behavioral profiling of human transitional cell carcinoma ex vivo. Cancer Res. 66, 3078–3086 (2006).
  • Chung GG , ZerkowskiMP, GhoshS, CampRL, RimmDL. Quantitative analysis of estrogen receptor heterogeneity in breast cancer. Lab Invest.87, 662–669 (2007).
  • Liu J , LauSK, VarmaVAet al. Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano 4, 2755–2765 (2010).
  • Joyce JA , PollardJW. Microenvironmental regulation of metastasis. Nat. Rev. Cancer9, 239–252 (2009).
  • Peng CW , LiuXL, LiuX, LiY. Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance. J. Transl. Med.8, 101 (2010).
  • Peng CW , LiuXL, ChenCet al. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 32, 2907–2917 (2011).
  • Liu XL , PengCW, ChenCet al. Quantum dots-based double-color imaging of HER2 positive breast cancer invasion. Biochem. Biophys. Res. Commun. 409, 577–582 (2011).
  • Dubertret B , SkouridesP, NorrisDJ, NoireauxV, BrivanlouAH, LibchaberA. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science298, 1759–1762 (2002).
  • Jaiswal J K, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21, 47–51 (2003).
  • Hardman R . A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect.114, 165–172 (2006).
  • Choi AO , BrownSE, SzyfM, MaysingerD. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med.86, 291–302 (2008).
  • Fitzpatrick JA , AndrekoSK, ErnstLA, WaggonerAS, BallouB, BruchezMP. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett.9, 2736–2741 (2009).
  • Zhang LW , Monteiro-RiviereNA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci.110, 138–155 (2009).
  • Yong KT , RoyI, DingH, BergeyEJ, PrasadPN. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small5, 1997–2004 (2009).
  • Chu M , WuQ, YangHet al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6, 670–678 (2010).
  • Pelley JL , DaarAS, SanerMA. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol. Sci.112, 276–296 (2009).
  • Su Y , PengF, JiangZet al.: In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials32, 5855–5862 (2011).
  • Yang RS , ChangLW, WuJPet al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115, 1339–1343 (2007).
  • Choi HS , LiuW, MisraPet al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).
  • Choi HS , LiuW, LiuFet al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).
  • Choi HS , IpeBI, MisraP, LeeJH, BawendiMG, FrangioniJV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett.9, 2354–2359 (2009).
  • Su Y , HuM, FanCet al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials 31, 4829–4834 (2010).
  • Barua S , RegeK. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small5, 370–376 (2009).
  • Williams Y , SukhanovaA, NowostawskaMet al. Probing cell-type-specific intracellular nanoscale barriers using size-tuned quantum dots. Small 5, 2581–2588 (2009).
  • Geys J , NemmarA, VerbekenEet al. Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ. Health Perspect. 116, 1607–1613 (2008).
  • Clift MJ , BrandenbergerC, Rothen-RutishauserB, BrownDM, StoneV. The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology286, 58–68 (2011).
  • Hauck TS , AndersonRE, FischerHC, NewbiggingS, ChanWC. In vivo quantum-dot toxicity assessment. Small6, 138–144 (2010).
  • Selvan ST , PatraPK, AngCY, YingJY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. Engl.46, 2448–2452 (2007).
  • Erogbogbo F , YongKT, RoyI, XuG, PrasadPN, SwihartMT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano2, 873–878 (2008).
  • Hu X , GaoX. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano4, 6080–6086 (2010).
  • Erogbogbo F , TienCA, ChangCWet al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug. Chem. 22, 1081–1088 (2011).
  • Bottrill M , GreenM. Some aspects of quantum dot toxicity. Chem. Commun.47, 7039–7050 (2011).
  • Xu H , ChenC, PengJet al. Evaluation of bioconjugate efficiency of different quantum dots probes immunostaining tumor marker protein. Appl. Spectrosc. 64, 847–852 (2010).
  • Yang XQ , ChenC, PengCWet al. Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal factor receptor in breast cancer tissue arrays. Int. J. Nanomed. 6, 2265–2273 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.