2,487
Views
2
CrossRef citations to date
0
Altmetric
Review

Thermal Potentiation of Chemotherapy by Magnetic Nanoparticles

&
Pages 1689-1707 | Published online: 30 Sep 2013

References

  • Cornell RM , SchwertmannU. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (2nd Edition). Wiley-VCH Verlag GMBH & Co, Weinheim, Germany (2003).
  • Spaldin NA . Magnetic Materials: Fundamentals and Applications (2nd Edition). Cambridge University Press, NY, USA (2010).
  • Russel WB , SavilleDA, SchowalterWR. Colloidal Dispersions. Cambridge University Press, Cambridge, UK (1989).
  • Jordan A , ScholzR, WustP, FählingH, FelixR. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater.201(1), 413–419 (1999).
  • Gupta AK , GuptaM. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials26(18), 3995–4021 (2005).
  • Dennis CL , JacksonAJ, BorchersJAet al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20(39), 395103 (2009).
  • Giustini AJ , IvkovR, HoopesPJ. Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology22(34), 345101 (2011).
  • Khot VM , SalunkheAB, ThoratND, NingthoujamRS, PawarSH. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans.42(4), 1249 (2012).
  • Kut C , ZhangY, HedayatiMet al. Preliminary study of injury from heating systemically delivered, nontargeted dextran–superparamagnetic iron oxide nanoparticles in mice. Nanomedicine 7(11), 1697–1711 (2012).
  • Easo SL , MohananPV. Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies. Carbohydr. Polym.92(1), 726–732 (2013).
  • Herrera AP , BarreraC, RinaldiC. Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran. J. Mater. Chem.18(31), 3650–3654 (2008).
  • Creixell M , HerreraAP, Latorre-EstevesM, AyalaV, Torres-LugoM, RinaldiC. The effect of grafting method on the colloidal stability and in vitro cytotoxicity of carboxymethyl dextran coated magnetic nanoparticles. J. Mater. Chem.20(39), 8539–8547 (2010).
  • López-Cruz A , BarreraC, Calero-DdelCVL, RinaldiC. Water dispersible iron oxide nanoparticles coated with covalently linked chitosan. J. Mater. Chem.19(37), 6870–6876 (2009).
  • Wang J , ZhaoG, LiY, LiuX, HouP. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl. Microbiol. Biotechnol.97(2), 681–692 (2012).
  • Hoque SM , SrivastavaC, SrivastavaN, VenkateshanN, ChattopadhyayK. Synthesis and characterization of Fe- and Co-based ferrite nanoparticles and study of the T1 and T2 relaxivity of chitosan-coated particles. J. Mater. Sci.48(2), 812–818 (2012).
  • Unsoy G , YalcinS, KhodadustR, GunduzG, GunduzU. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res.14(11), 964 (2012).
  • Sonvico F , MornetS, VasseurSet al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. BioconJ. Chem. 16(5), 1181–1188 (2005).
  • Sun C , SzeR, ZhangM. Folic acid–PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. Part A78A(3), 550–557 (2006).
  • Barrera C , HerreraA, ZayasY, RinaldiC. Surface modification of magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater.321(10), 1397–1399 (2009).
  • Barrera C , HerreraAP, RinaldiC. Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol). J. Colloid Interface Sci.329(1), 107–113 (2009).
  • Barrera C , HerreraAP, BezaresNet al. Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. J. Colloid Interface Sci. 377(1), 40–50 (2012).
  • Bee A , MassartR, NeveuS. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater.149(1), 6–9 (1995).
  • Halbreich A , RogerJ, PonsJNet al. Biomedical applications of maghemite ferrofluid. Biochimie 80(5), 379–390 (1998).
  • RuizMoreno RG , MartinezAI, Castro-RodriguezR, BartoloP. Synthesis and characterization of citrate coated magnetite nanoparticles. J. Supercond. Nov. Magn.26(3), 709–712 (2012).
  • Ruizmoreno RG , MartínezAI, FalconyC, Castro-RodriguezR, Bartolo-PérezP, Castro-RománM. One pot synthesis of water compatible and monodisperse magnetite nanoparticles. Mater. Lett.92(C), 181–183 (2013).
  • Fauconnier N , PonsJN, RogerJ, BeeA. Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci.194(2), 427–433 (1997).
  • Huang H , DelikanliS, ZengH, FerkeyDM, PralleA. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol.5(8), 602–606 (2010).
  • Xiong F , ZhuZY, XiongCet al. Preparation, characterization of 2-deoxy-D-glucose functionalized dimercaptosuccinic acid-coated maghemite nanoparticles for targeting tumor cells. Pharm. Res. 29(4), 1087–1097 (2011).
  • Konda SD , ArefM, WangS, BrechbielM, WienerEC. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magn. Reson. Mater. Phys. Biol. Med.12(2–3), 104–113 (2001).
  • Yoo MK , ParkIK, LimHTet al. Folate–PEG–superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater. 8(8), 3005–3013 (2012).
  • Mahajan S , KoulV, ChoudharyV, ShishodiaG, BhartiAC. Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology24(1), 015603 (2012).
  • Ahrens ET , Feili-HaririM, XuH, GenoveG, MorelPA. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med.49(6), 1006–1013 (2003).
  • Grüttner C , MüllerK, TellerJ, WestphalF, ForemanA, IvkovR. Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J. Magn. Magn. Mater.311(1), 181–186 (2007).
  • Le B , ShinkaiM, KitadeTet al. Preparation of tumor-specific magnetoliposomes and their application for hyperthermia. J. Chem. Eng. Jap. 34(1), 66–72 (2001).
  • Yang L , MaoH, WangYAet al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2), 235–243 (2008).
  • Creixell M , HerreraAP, AyalaVet al. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells. J. Magn. Magn. Mater. 322(15), 2244–2250 (2010).
  • Creixell M , BohórquezAC, Torres-LugoM, RinaldiC. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano5(9), 7124–7129 (2011).
  • Wang AZ , BagalkotV, VasilliouCCet al. Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9), 1311–1315 (2008).
  • Yu MK , KimD, LeeIH, SoJS, JeongYY, JonS. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small7(15), 2241–2249 (2011).
  • Bamrungsap S , ShukoorMI, ChenT, SefahK, TanW. Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal. Chem.83(20), 7795–7799 (2011).
  • Bamrungsap S , ChenT, ShukoorMIet al. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6(5), 3974–3981 (2012).
  • Auerbach M . Ferumoxytol as a new, safer, easier-to-ad minister intravenous iron: yes or no? Am. J. Kidney Dis.52(5), 826–829 (2008).
  • Marincek B . Diagnostic improvement in MRI of gynecological neoplasms. J. Belge Radiol.79(1), 13–17 (1996).
  • Reimer P , BalzerT. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol.13(6), 1266–1276 (2003).
  • Sun C , LeeJ, ZhangM. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Del. Rev.60(11), 1252–1265 (2008).
  • Na HB , SongIC, HyeonT. Inorganic nanoparticles for MRI contrast agents. Adv. Mater.21(21), 2133–2148 (2009).
  • Arruebo M , Fernández-PachecoR, IbarraMR, SantamariaJ. Magnetic nanoparticles for drug delivery. Nano Today2(3), 22–32 (2007).
  • Mcbain SC , YiuHHP, DobsonJ. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine3(2), 169 (2008).
  • Tietze R , LyerS, DürrS, AlexiouC. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine (Lond.)7(3), 447–457 (2012).
  • Wang N , GuanY, YangLet al. Magnetic nanoparticles (MNPs) covalently coated by PEO-PPO-PEO block copolymer for drug delivery. J. Colloid Interface Sci. 395 (C), 50–57 (2013).
  • Pankhurst QA , ThanhNTK, JonesSK, DobsonJ. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys.42(22), 224001 (2009).
  • Schwerdt JI , GoyaGF, CalatayudP, HereñúCB, ReggianiPC, GoyaRG. Magnetic field-assisted gene delivery: achievements and therapeutic potential. Curr. Gene Ther.12(2), 116–126 (2012).
  • Mannix RJ , KumarS, CassiolaFet al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3(1), 36–40 (2007).
  • Dobson J . Remote control of cellular behaviour with magnetic nanoparticles. Nature Nanotechnol.3, 139–143 (2008).
  • Lee JH , KimES, ChoMHet al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew Chem. Int. Ed. 49(33), 5698–5702 (2010).
  • Sniadecki NJ . Minireview: a tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology151(2), 451–457 (2010).
  • Cho MH . A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater.11(12), 1038–1043 (2012).
  • Derfus AM , von Maltzahn G, Harris TJ et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater.19(22), 3932–3936 (2007).
  • Amstad E , KohlbrecherJ, MüllerE, SchweizerT, TextorM, ReimhultE. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett.11(4), 1664–1670 (2011).
  • Hu SH , ChenYY, LiuTC, TungTH, LiuDM, ChenSY. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chem. Commun.47(6), 1776 (2011).
  • Amstad E , ReimhultE. Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine7(1), 145–164 (2012).
  • Dennis CL , JacksonAJ, BorchersJAet al. The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles. J. Appl. Phys. 103(7), 07A319 (2008).
  • Latorre M , RinaldiC. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. PR Health Sci. J.28(3), 227–238 (2009).
  • Laurent S , DutzS, HäfeliUO, MahmoudiM. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci.166(1–2), 8–23 (2011).
  • Bickford LR . Ferromagnetic resonance absorption in magnetite single crystals. Phys. Review78(4), 449–457 (1950).
  • Bickford LR , BrownlowJM, PenoyerRF. Magnetocrystalline anisotropy in cobalt-substituted magnetite single crystals. Proc. IEE-Part B Radio Electron. Eng.104(5 Suppl.), 238–244 (1957).
  • Goya GF , BerquóTS, FonsecaFC, MoralesMP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys.94(5), 3520 (2003).
  • Del Castillo VLCD , RinaldiC. Effect of sample concentration on the determination of the anisotropy constant of magnetic nanoparticles. IEEE Magn. Trans.46(3), 852–859 (2010).
  • Tung LD , KolesnichenkoV, CaruntuD, ChouNH, O‘ConnorCJ, SpinuL. Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys.93(10), 7486–7488 (2003).
  • Rosensweig RE . Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater.252, 370–374 (2002).
  • Lee SW , BaeS, TakemuraYet al. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J. Magn. Magn. Mater. 310(2), 2868–2870 (2007).
  • Veverka M , VeverkaP, KamanOet al. Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18(34), 345704 (2007).
  • Kim DH , NiklesDE, JohnsonDT, BrazelCS. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J. Magn. Magn. Mater.320(19), 2390–2396 (2008).
  • Lee JH , JangJT, ChoiJSet al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6(7), 418–422 (2011).
  • Simonsen LO , HarbakH, BennekouP. Cobalt metabolism and toxicology – a brief update. Sci. Total Environ.432(C), 210–215 (2012).
  • Fortin JP , GazeauF, WilhelmC. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J.37(2), 223–228 (2007).
  • Liu G , HongRY, GuoL, LiYG, LiHZ. Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles. Appl. Surf. Sci.257(15), 6711–6717 (2011).
  • Lartigue L , HugounenqP, AlloyeauDet al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12), 10935–10949 (2012).
  • Nielsen OS , HorsmanM, OvergaardJ. A future for hyperthermia in cancer treatment? Eur. J. Cancer37(13), 1587–1589 (2001).
  • Franckena M , van der Zee J. Use of combined radiation and hyperthermia for gynecological cancer. Curr. Opin. Obstet. Gynecol.22(1), 9–14 (2010).
  • Pennacchioli E , FioreM, GronchiA. Hyperthermia as an adjunctive treatment for soft-tissue sarcoma. Expert Rev. Anticancer Ther.9(2), 199–210 (2009).
  • Gilchrist RK , MedalR, ShoreyWD, HanselmanRC, ParrottJC, TaylorCB. Selective inductive heating of lymph nodes. Ann. Surg.146(4), 596–606 (1957).
  • Maeda H , WuJ, SawaT, MatsumuraY, HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release65(1–2), 271–284 (2000).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41(41), 189–207 (2001).
  • Fang J , NakamuraH, MaedaH. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Del. Rev.63(3), 136–151 (2011).
  • Kwon IK , LeeSC, HanB, ParkK. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release164(2), 108–114 (2012).
  • Lammers T , KiesslingF, HenninkWE, StormG. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release161(2), 175–187 (2012).
  • Maeda H . Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release164(2), 138–144 (2012).
  • Taurin S , NehoffH, GreishK. Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J. Control. Release164(3), 265–275 (2012).
  • Maeda H , NakamuraH, FangJ. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Del. Rev.65(1), 71–79 (2013).
  • Alexis F , RheeJW, RichieJP, Radovic-MorenoAF, LangerR, FarokhzadOC. New frontiers in nanotechnology for cancer treatment. Urol. Oncol.26(1), 74–85 (2008).
  • Gordon RT , HinesJR, GordonD. Intracellular hyperthermia – biophysical approach to cancer-treatment via intracellular temperature and biophysical alterations. Med. Hypotheses5(1), 83–102 (1979).
  • Rabin Y . Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int. J. Hyperthermia18(3), 194–202 (2002).
  • Keblinski P , CahillDG, BodapatiA, SullivanCR, TatonTA. Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys.100(5), 054305 (2006).
  • Andrä W , d‘AmblyCG, HergtR, HilgerI, KaiserWA. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J. Magn. Magn. Mater.194(1), 197–203 (1999).
  • Polo-Corrales L , RinaldiC. Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. J. Appl. Phys.111(7), 07B334 (2012).
  • Rodriguez HL , Latorre-EstevesM, MendezJet al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int. J. Nanomedicine 6, 373–380 (2011).
  • Lee JS , Rodriguez-LuccioniHL, MéndezJet al. Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum. J. Nanosci. Nanotechnol. 11(5), 4153–4157 (2011).
  • Domenech M , Marrero-BerriosI, Torres-LugoM, RinaldiC. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano7(6), 5091–5101 (2013).
  • Tuteja A , MackayME, NarayananS, AsokanS, WongMS. Breakdown of the continuum stokes – Einstein relation for nanoparticle diffusion. Nano Lett.7(5), 1276–1281 (2007).
  • Liao H , NehlCL, HafnerJH. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine1(2), 201–208 (2006).
  • Huang X , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23(3), 217–228 (2007).
  • Lal S , ClareSE, HalasNJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res.41(12), 1842–1851 (2008).
  • Strong LE , WestJL. Thermally responsive polymer–nanoparticle composites for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3(3), 307–317 (2011).
  • Alkilany AM , ThompsonLB, BoulosSP, SiscoPN, MurphyCJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Del. Rev.64(2), 190–199 (2012).
  • Mieszawska AJ , MulderWJM, FayadZA, CormodeDP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm.10(3), 831–847 (2013).
  • Jordan A , ScholzR, Maier-HauffKet al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225(1), 118–126 (2001).
  • Hao R , XingR, XuZ, HouY, GaoS, SunS. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater.22(25), 2729–2742 (2010).
  • Veiseh O , GunnJW, ZhangM. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Del. Rev.62(3), 284–304 (2010).
  • Ho D , SunX, SunS. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res.44(10), 875–882 (2011).
  • Xie J , LiuG, EdenHS, AiH, ChenX. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res.44(10), 883–892 (2011).
  • Yiu HH . Engineering the multifunctional surface on magnetic nanoparticles for targeted biomedical applications: a chemical approach. Nanomedicine (Lond.)6(8), 1429–1446 (2011).
  • Johannsen M , GneveckowU, TaymoorianKet al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective Phase I trial. Int. J. Hyperthermia 23(3), 315–323 (2007).
  • Shah MA , SchwartzGK. Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res.7(8), 2168–2181 (2001).
  • Petin VG , KimJK, ZhurakovskayaGP, DergachevaIP. Some general regularities of synergistic interaction of hyperthermia with various physical and inactivating agents. Int. J. Hyperthermia18(1), 40–49 (2002).
  • Greco WR , BravoG, ParsonsJC. The search for synergy – a critical-review from a response-surface perspective. Pharmacol. Rev.47(2), 331–385 (1995).
  • Berenbaum MC . What is synergy. Pharmacol. Rev.41(2), 93–141 (1989).
  • Kapinga HH . Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia22(3), 191–196 (2006).
  • Roti Roti JL . Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int. J. Hyperthermia24(1), 3–15 (2008).
  • Hauck TS , JenningsTL, YatsenkoT, KumaradasJC, ChanWCW. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater.20(20), 3832–3838 (2008).
  • Issels RD . Hyperthermia adds to chemotherapy. Eur. J. Cancer44(17), 2546–2554 (2008).
  • Ohtsubo T , SaitoH, TanakaNet al. Enhancement of cisplatin sensitivity and platinum uptake by 40 degrees C hyperthermia in resistant cells. Cancer Lett. 119(1), 47–52 (1997).
  • Takemoto M , KurodaM, UranoMet al. The effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours. Int. J. Hyperthermia 19(2), 193–203 (2003).
  • van Bree C , FrankenNA, SnelFA, HavemanJ, BakkerPJ. Wild-type p53-function is not required for hyperthermia-enhanced cytotoxicity of cisplatin. Int. J. Hyperthermia17(4), 337–346 (2001).
  • Peng CL , TsaiHM, YangSJet al. Development of thermosensitive poly(N-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release. Nanotechnology 22(26), 265608 (2011).
  • Neznanov N , KomarovAP, NeznanovaL, Stanhope-BakerP, GudkovAV. Proteotoxic stress targeted therapy (PSTT): induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib. Oncotarget2(3), 209–221 (2011).
  • Piperdi B , LingYH, LiebesL, MuggiaF, Perez-SolerR. Bortezomib: understanding the mechanism of action. Mol. Cancer Ther.10(11), 2029–2030 (2011).
  • Kapoor P , RamakrishnanV, RajkumarSV. Bortezomib combination therapy in multiple myeloma. Semin. Hematol.49(3), 228–242 (2012).
  • Johnson VA , SinghEK, NazarovaLA, AlexanderLD, McAlpineSR. Macrocyclic inhibitors of Hsp90. Curr. Top. Med. Chem.10(14), 1380–1402 (2010).
  • Balogh G , MaulucciG, GombosIet al. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS One 6(6), e21182 (2011).
  • Dempsey NC , IrelandHE, SmithCM, HoyleCF, WilliamsJHH. Heat shock protein translocation induced by membrane fluidization increases tumor-cell sensitivity to chemotherapeutic drugs. Cancer Lett.296(2), 257–267 (2010).
  • Adachi S , KokuraS, OkayamaTet al. Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int. J. Hyperthermia 25(3), 210–219 (2009).
  • Ishikawa T , KokuraS, SakamotoNet al. Phase II trial of combined regional hyperthermia and gemcitabine for locally advanced or metastatic pancreatic cancer. Int. J. Hyperthermia 28(7), 597–604 (2012).
  • Rusak G , GutzeitHO, Ludwig-MullerJ. Effects of structurally related flavonoids on hsp gene expression in human promyeloid leukaemia cells. Food Technol. Biotechnol.40(4), 267–273 (2002).
  • Grant S . Enhancing proteotoxic stress as an anticancer strategy. Oncotarget2(4), 284–286 (2011).
  • Yavelsky V , VaisO, PiuraB, WolfsonM, RabinovichA, FraifeldV. The role of Hsp90 in cell response to hyperthermia. J. Therm. Biol.29(7–8), 509–514 (2004).
  • Helmbrecht K , ZeiseE, RensingL. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif.33(6), 341–365 (2000).
  • Devi SV , PrakashT. Kinetics of cisplatin release by in vitro using poly(D,L-lactide) coated Fe3O4 nanocarriers. IEEE Trans. NanoBiosci.12(1), 60–63 (2013).
  • Wagstaff AJ , BrownSD, HoldenMRet al. Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorg. Chim. Acta 393, 328–333 (2012).
  • Falqueiro AM , PrimoFL, MoraisPC, Mosiniewicz-SzablewskaE, SuchockiP, TedescoAC. Selol-loaded magnetic nanocapsules: a new approach for hyperthermia cancer therapy. J. Appl. Phys.109(7), p07B306 (2011).
  • Likhitkar S , BajpaiAK. Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydr. Polym.87(1), 300–308 (2012).
  • Kavaz D , OdabasS, GuvenE, DemirbilekM, DenkbasEB. Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers. J. Bioact. Compatible Polym.25(3), 305–318 (2010).
  • Kumari S , SinghRP. Glycolic acid-functionalized chitosan-CO3O4–Fe3O4 hybrid magnetic nanoparticles-based nanohybrids scaffolds for drug delivery and tissue engineering. J. Mater. Sci.48, 1524–1532 (2013).
  • Viota JL , CarazoA, Munoz-GamezJAet al. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 33(3), 1183–1192 (2013).
  • Naik S , CarpenterEE. Poly(D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier. J. Appl. Phys.103(7), 07A313 (2008).
  • Jiang Z , ChenBA, XiaGHet al. The reversal effect of magnetic Fe3O4 nanoparticles loaded with cisplatin on SKOV3/DDP ovarian carcinoma cells. Int. J. Nanomedicine 4(1), 107–114 (2009).
  • Taylor A , KrupskayaY, KramerKet al. Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia. Carbon 48(8), 2327–2334 (2010).
  • Babincová M , AltanerovaV, AltanerC, BergemannC, BabinecP. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Trans. Nanobiosci.7(1), 15–19 (2008).
  • Kettering M , ZornH, Bremer-StreckSet al. Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Phys. Med. Biol. 54(17), 5109–5121 (2009).
  • Cheng K , PengS, XuCJ, SunS. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc.131(30), 10637–10644 (2009).
  • Lee JS , Rodríguez-LuccioniHL, MéndezJet al. Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum. J. Nanosci. Nanotechnol. 11(5), 4153–4157 (2011).
  • Alvarez-Berríos MP , CastilloA, MéndezJ, SotoO, RinaldiC, Torres-LugoM. Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int. J. Nanomedicine8, 1003–1013 (2013).
  • Rodríguez-Luccioni HL , Latorre-EstevesM, Méndez-VegaJet al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int. J. Nanomedicine 6, 373–380 (2011).
  • Brusentsov NA , BrusentsovaTN, FilinovaEYet al. Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors. J. Magn. Magn. Mater. 311(1), 176–180 (2007).
  • Brusentsov NA , PolyanskiiVA, PirogovYAet al. Antitumor effects of the combination of magnetohydrodynamic thermochemotherapy and magnetic resonance tomography. Pharm. Chem. J. 44(6), 291–295 (2010).
  • Li FR , YanWH, GuoYH, QiH, ZhouHX. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int. J. Hyperthermia25(5), 383–391 (2009).
  • Ito A , SaitoH, MitobeKet al. Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature. Cancer Sci. 100(3), 558–564 (2009).
  • Ren YY , ZhangHJ, ChenBAet al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int. J. Nanomedicine 7, 2261–2269 (2012).
  • Kulshrestha P , GogoiM, BahadurD, BanerjeeR. In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf. B Biointerfaces96, 1–7 (2012).
  • Alvarez-Berrios MP , CastilloA, RinaldiC, Torres-LugoM. Magnetic fluid hyperthermia enhances bortezomib cytotoxicity in sensitive and resistant cancer cell lines. Int. J. Nanomedicine (2013) (In Press).
  • Mohamed F , MarchettiniP, StuartOA, UranoM, SugarbakerPH. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann. Surg. Oncol.10(4), 463–468 (2003).
  • Takagi M , SakataK, SomeyaMet al. The combination of hyperthermia or chemotherapy with gimeracil for effective radiosensitization. Strahlenther. Onkol. 188(3), 255–261 (2012).
  • Vertrees RA , DasGC, PopovVLet al. Synergistic interaction of hyperthermia and gemcitabine in lung cancer. Cancer Biol. Ther. 4(10), 1144–1153 (2005).
  • Chen F , RezaviR, WangCC, HarrisonLE. Proteasome inhibition potentiates the cytotoxic effects of hyperthermia in HT-29 colon cancer cells through inhibition of heat shock protein 27. Oncology73(1–2), 98–103 (2007).
  • Chen F , WangCC, KimE, HarrisonLE. Hyperthermia in combination with oxidative stress induces autophagic cell death in HT-29 colon cancer cells. Cell Biol. Int.32(7), 715–723 (2008).
  • Razavi R , HarrisonLE. Thermal sensitization using induced oxidative stress decreases tumor growth in an in vivo model of hyperthermic intraperitoneal perfusion. Ann. Surg. Oncol.17(1), 304–311 (2010).
  • Wang CC , ChenF, KimE, HarrisonLE. Thermal sensitization through ROS modulation: a strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy. Surgery142(3), 384–392 (2007).
  • Eppink B , KrawczykPM, StapJ, KanaarR. Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int. J. Hyperthermia28(6), 509–517 (2012).
  • Miyagawa T , SaitoH, MinamiyaYet al. Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low Curie temperature. Int. J. Clin. Oncol. doi: 10.1007/s10147-013-0606-x (2013) (Epub ahead of print).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.