References

  • Julien DC , BehnkeS, WangG, MurdochGK, HillRA. Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer. MAbs3(5), 467–478 (2011).
  • Dykman L , KhlebtsovN. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev.41(6), 2256–2282 (2012).
  • Mallidi S , LarsonT, AaronJ, SokolovK, EmelianovS. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express.15(11), 6583–6588 (2007).
  • Glaser ES , MasseyKL, ZhuC, CurleySA. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery148(2), 319–324 (2010).
  • Tiwari PM , VigK, DennisVA, SinghR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials1, 31–63 (2011).
  • Haruta Y , SeonBK. Distinct human leukemia-associated cell surface glycoprotein GP160 defined by monoclonal antibody SN6. Proc. Natl Acad. Sci. USA83(20), 7898–7902 (1986).
  • Westphal JR , WillemsHW, SchalkwijkCJ, RuiterDJ, de Waal RM. A new 180-kDa dermal endothelial cell activation antigen: in vitro and in situ characteristics. J. Invest. Dermatol.100(1), 27–34 (1993).
  • Burrows FJ , DerbyshireEJ, TazzariPLet al. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin. Cancer Res. 1(12), 1623–1634 (1995).
  • Miller DW , GraulichW, KargesBet al. Elevated expression of endoglin, a component of the TGF-beta–receptor complex, correlates with proliferation of tumor endothelial cells. Int. J. Cancer. 81(4), 568–572 (1999).
  • Fonsatti E , NicolayHJ, AltomonteM, CovreA, MaioM. Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc. Res.86(1), 12–19 (2010).
  • Wang JM , KumarS, PyeD, van Agthoven AJ, Krupinski J, Hunter RD. A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int. J. Cancer.54(3), 363–370 (1993).
  • Clasper S , RoystonD, BabanDet al. A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res. 68(18), 7293–7303 (2008).
  • Yoshitomi H , KobayashiS, OhtsukaMet al. Specific expression of endoglin (CD105) in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer. Pancreas 37(3), 275–281 (2008).
  • Hussein MR . Transforming growth factor-beta and malignant melanoma: molecular mechanisms. J. Cutan. Pathol.32(6), 389–395 (2005).
  • Sun T , SunBC, NiCSet al. Pilot study on the interaction between B16 melanoma cell-line and bone-marrow derived mesenchymal stem cells. Cancer Lett. 263(1), 35–43 (2008).
  • Letamendía A , LastresP, AlmendroNet al. Endoglin, a component of the TGF-beta receptor system, is a differentiation marker of human choriocarcinoma cells. Int. J. Cancer 76(4), 541–546 (1998).
  • Kumar S , GhellalA, LiCet al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 59(4), 856–861 (1999).
  • Romani AA , BorghettiAF, Del Rio P, Sianesi M, Soliani P. The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J. Surg. Oncol.93(6), 446–455 (2006).
  • Marioni G , D‘AlessandroE, GiacomelliL, StaffieriA. CD105 is a marker of tumour vasculature and a potential target for the treatment of head and neck squamous cell carcinoma. J. Oral Pathol. Med.39(5), 361–367 (2010).
  • Tanaka F , OtakeY, YanagiharaKet al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin. Cancer Res. 7(11), 3410–3415 (2001).
  • Li C , GardyR, SeonBKet al. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br. J. Cancer 88(9), 1424–1431 (2003).
  • Charpin C , DalesJP, GarciaSet al. Tumor neoangiogenesis by CD31 and CD105 expression evaluation in breast carcinoma tissue microarrays. Clin. Cancer Res. 10(17), 5815–5819 (2004).
  • Carmeliet P , JainRK. Molecular mechanisms and clinical applications of angiogenesis. Nature473(7347), 298–307 (2011).
  • Mitchell DC , BryanBA. Anti-angiogenic therapy: adapting strategies to overcome resistant tumors. J. Cell. Biochem.111(3), 543–553 (2010).
  • Gasparini G , LongoR, FanelliM, TeicherBA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J. Clin. Oncol.23(6), 1295–1311 (2005).
  • Seon BK , MatsunoF, HarutaY, KondoM, BarcosM. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with anti-human endoglin immunotoxin. Clin. Cancer Res.3(7), 1031–1044 (1997).
  • Matsuno F , HarutaY, KondoM, TsaiH, BarcosM, SeonBK. Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin. Cancer Res.5(2), 371–382 (1999).
  • Tabata M , KondoM, HarutaY, SeonBK. Antiangiogenic radioimmunotherapy of human solid tumors in SCID mice using 125I-labeled anti-endoglin monoclonal antibodies. Int. J. Cancer82(5), 737–742 (1999).
  • Takahashi N , HabaA. Matsuno F, Seon BK. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res.61(21), 846–854 (2001).
  • Tsujie M , UnedaS, TsaiH, SeonBK. Effective anti-angiogenic therapy of established tumors in mice by naked anti-human endoglin (CD105) antibody: differences in growth rate and therapeutic response between tumors growing at different sites. Int. J. Oncol.29(5), 1087–1094 (2006).
  • Tsujie M , TsujieT, ToiHet al. Anti-tumor activity of an anti-endoglin monoclonal antibody is enhanced in immunocompetent mice. Int. J. Cancer 122(10), 2266–2273 (2008).
  • Uneda S , ToiH, TsujieTet al. Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int. J. Cancer 125(6), 1446–1453 (2009).
  • Marega R , KarmaniL, FlamantLet al. Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vivo and in vitro study. J. Mater. Chem. 22(39), 21305–21312 (2012).
  • Karmani L , LabarD, ValemboisVet al. Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol. Imaging 8(5), 402–408 (2013).
  • Vugts DJ , van Dongen GAMS. 89Zr-labeled compounds for PET imaging guided personalized therapy. Drug Discov. Today Technol.8(2–4), e53–e61 (2011).
  • van Dongen GAMS , VisserGWM, Lub-de-HoogeMN, De Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist12(12), 1379–1389 (2007).
  • Holland JP , ShehYC, LewisJS. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol.36(7), 729–739 (2009).
  • Kandil SA , ScholtenB, SalehZA, YoussefAM, QaimSM, CoenenHH. A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J. Radioanal. Nucl. Chem.274(1), 45–52 (2007).
  • Vosjan MJWD , PerkLR, VisserGWet al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Prot. 5(4), 739–743 (2010).
  • Perk LR , VosjanMJWD, VisserGWet al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur. J. Nucl. Med. Mol. Imaging 37(2), 250–259 (2010).
  • Moreau N , MichielsC, MasereelBet al. PVD synthesis and transfer into water-based solutions of functionalized gold nanoparticles. Plasma Process Polymer. 6(1), S888–S892 (2009).
  • Masereel B , DinguizliM, BouzinCet al. Antibody immobilization on gold nanoparticles coated layer-by-layer with polyelectrolytes. J. Nanopart. Res. 13(4), 1573–1580 (2011).
  • Hong H , YangY, ZhangYet al. Positron emission tomography imaging of CD105 expression during tumor angiogenesis. Eur. J. Nucl. Med. Mol. Imaging. 38(7), 1335–1343 (2011).
  • Huisman MC , RederS, WeberAW, ZieglerSI, SchwaigerM. Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur. J. Nucl. Med. Mol. Imaging34(4), 532–540 (2007).
  • Alkilany AM , MurphyCJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res.12(7), 2313–2333 (2010).
  • Garnett MC , KallinteriP. Nanomedicines and nanotoxicology: some physiological principles. Occup. Med. (Lond.)56(5), 307–311 (2006).
  • Hirota K , HasegawaT, HinataHet al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J. Control. Release 119(1), 69–76 (2007).
  • Videira MA , BotelhoMF, SantosAC, GouveiaLF, de Lima JJ, Almeida AJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target.10(8), 607–613 (2002).
  • He C , HuY, YinL, TangC, YinC. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials31(13), 3657–3666 (2010).
  • Mahmoud M , BorthwickGM, HislopAA, ArthurHM. Endoglin and activin receptor-like-kinase 1 are co-expressed in the distal vessels of the lung: implications for two familial vascular dysplasias, HHT and PAH. Lab. Invest.89(1), 15–25 (2009).
  • De Jong WH , HagensWI, KrystekP, BurgerMC, SipsAJ, GeertsmaRE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29(12), 1912–1919 (2008).
  • Tinianow JN , GillHS, OgasawaraAet al. Site-specifically 89Zr-labeled monoclonal antibodies for ImmunoPET. Nucl. Med. Biol. 37(3), 289–297 (2010).
  • Mealey J Jr. Turn-over of carrier-free zirconium-89 in man. Nature179(4561), 673–674 (1957).
  • Abou DS , KuT, Smith-JonesPM. In vivo biodistribution and accumulation of 89Zr in mice. Nucl. Med. Biol.38(5), 675–681 (2011).
  • Glazer ES , CurleySA. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer116(13), 3285–3293 (2010).
  • Moran CH , WainerdiSM, CherukuriTKet al. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2(5), 400–405 (2009).
  • Chang MY , ShiauAL, ChenYH, ChangCJ, ChenHH, WuCL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci.99(7), 1479–1484 (2008).
  • Hainfeld JF , SlatkinDN, SmilowitzHM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.49(18), N309–N315 (2004).
  • Raoof M , CurleySA. Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma. Int. J. Hepatol.676957 (2011).
  • Rosen LS , HurwitzHI, WongMKet al. A Phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin. Cancer Res. 18(17), 4820–4829 (2012).
  • Fonsatti E , Del Vecchio L, Altomonte M et al. Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J. Cell. Physiol.188(1), 1–7 (2001).
  • Wang JM , KumarS, PyeD, van Agthoven AJ, Krupinski J, Hunter RD. A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int. J. Cancer54(3), 363–370 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.