349
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of Stabilized Glucomannosylated Chitosan Nanoparticles Using Tandem Crosslinking Method for Oral Vaccine Delivery

, &
Pages 2511-2529 | Received 08 Aug 2013, Accepted 15 Dec 2013, Published online: 05 Mar 2014

References

  • Pan Y , LiY, ZhaoHet al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249 (1–2), 139–147 (2002).
  • Xu Y , DuY. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm.250(1), 215–226 (2003).
  • Calvo P , Remuñán López C, Vila Jato JL, Alonso MJ. Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci.63(1), 125–132 (1997).
  • Csaba N , Koping-HoggardM, AlonsoMJ. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int. J. Pharm.382(1–2), 205–214 (2009).
  • Katas H , AlparHO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release115(2), 216–225 (2006).
  • Bowman K , LeongKW. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed.1(2), 117–128 (2006).
  • Lopez Leon T , CarvalhoELS, SeijoB, Ortega Vinuesa JL, Bastos Gonzalez D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J. Colloid. Interf. Sci.283(2), 344–351 (2005).
  • Sung H-W , Sonaje K, Liao Z-X, Hsu L-W, Chuang E-Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc. Chem. Res.45(4), 619–629 (2012).
  • Sonaje K , Chen Y-J, Chen H-L et al. Enteric-coated capsules filled with freeze-dried chitosan/poly (γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials31(12), 3384–3394 (2010).
  • Makhlof A , TozukaY, TakeuchiH. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci.42(5), 445–451 (2011).
  • Sarmento B , RibeiroA, VeigaF, SampaioP, NeufeldR, FerreiraD. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res.24(12), 2198–2206 (2007).
  • Tiwari S , AgrawalGP, VyasSP. Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine5(10), 1617–1640 (2010).
  • Fahmy TM , DementoSL, CaplanMJ, MellmanI, SaltzmanWM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine3(3), 343–355 (2008).
  • Keler T , RamakrishnaV, FangerMW. Mannose receptor-targeted vaccines. Exp. Opin. Biol. Ther.4(12), 1953–1962 (2004).
  • Sheng KC , KalkanidisM, PouniotisDSet al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol. 38(2), 424–436 (2008).
  • Jain S , HardeH, IndulkarA, AgrawalAK. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine10(2), 431–440 (2014).
  • Jain S , IndulkarA, HardeH, AgrawalAK. Oral mucosal immunization using glucomannosylated bilosomes. J. Biomed. Nanotechnol.10(6), 932–947 (2014).
  • Du J , SunR, ZhangSet al. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. Macromol. Rapid Comm. 25(9), 954–958 (2004).
  • Du J , SunR, ZhangS, ZhangLF, XiongCD, PengYX. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. I. Physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles. Biopolymers78(1), 1–8 (2005).
  • Fernandez-Urrusuno R , CalvoP, Remunan-LopezC, Vila-JatoJL, AlonsoMJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res.16(10), 1576–1581 (1999).
  • Ma Z , YeohHH, LimLY. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J. Pharm. Sci.91(6), 1396–1404 (2002).
  • Boratynski J , ZalT. Colorimetric micromethods for glutaraldehyde determination by means of phenol and sulfuric acid or phenol and perchloric acid. Anal. Biochem.184(2), 259–262 (1990).
  • Lyman GW , JohnsonRN, KhoB. Gas chromatographic determination of glutaraldehyde. J. Chromatogr. A.156(2), 285–291 (1978).
  • Jain AK , SwarnakarNK, GoduguC, SinghRP, JainS. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials32(2), 503–515 (2011).
  • Jain S , RathiVV, JainAK, DasM, GoduguC. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine7(9), 1311–1337 (2012).
  • Xie SY , WangSL, ZhaoBK, HanC, WangM, ZhouWZ. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf. B.67(2), 199–204 (2008).
  • Amidi M , RomeijnSG, BorchardG, JungingerHE, HenninkWE, JiskootW. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release111(1–2), 107–116 (2006).
  • Sayin B , SomavarapuS, LiXWet al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int. J. Pharm. 363 (1–2), 139–148 (2008).
  • Jelvehgari M , Zakeri-MilaniP, Siahi-ShadbadMRet al. Development of pH-sensitive insulin nanoparticles using eudragit L100–55 and chitosan with different molecular weights. AAPS PharmSciTech. 11(3), 1237–1242 (2010).
  • Zhang N , LiJ, JiangW, RenC, XinJ, LiK. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm.393(1–2), 213–219 (2010).
  • Shukla A , KatareOP, SinghB, VyasSP. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int. J. Pharm.385(1–2), 47–52 (2010).
  • Roger E , LagarceF, BenoitJP. The gastrointestinal stability of lipid nanocapsules. Int. J. Pharm.379(2), 260–265 (2009).
  • Kalaria DR , SharmaG, BeniwalV, Ravi Kumar MNV. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm. Res.26(3), 492–501 (2009).
  • Wiecinski PN , MetzKM, ManghamAN, JacobsonKH, HarriersRJ, PedersenJA. Gastrointestinal biodurability of engineered nanoparticles: development of an in vitro assay. Nanotoxicology3(3), 202–214 (2009).
  • Shan X , LiuC, YuanYet al.: In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer. Colloids Surf. B.72(2), 303–311 (2009).
  • Sarti F , PereraG, HintzenFet al.: In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials32(16), 4052–4057 (2011).
  • Garinot M , FievezV, PourcelleVet al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release 120(3), 195–204 (2007).
  • Jain S , SinghP, MishraV, VyasS. Mannosylated niosomes as adjuvant–carrier system for oral genetic immunization against hepatitis B. Immunol. Lett.101(1), 41–49 (2005).
  • Jain S , SharmaRK, VyasSP. Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in vitro and in vivo characterization. J. Pharm. Pharmacol.58(3), 303–310 (2006).
  • Vila A , SanchezA, JanesKet al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm. 57(1), 123–131 (2004).
  • Zhu Y , LiX, ChenCet al. Effects of aluminum trichloride on the trace elements and cytokines in the spleen of rats. Food Chem. Toxicol. 50(8), 2911–2915 (2012).
  • Rahman Z , ZidanAS, KhanMA. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur. J. Pharm. Biopharm.76(1), 127–137 (2010).
  • Jain S , KumarD, SwarnakarNK, ThankiK. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials33(28), 6758–6768 (2012).
  • Kreuter J . Peroral administration of nanoparticles. Adv. Drug Del. Rev.7(1), 71–86 (1991).
  • Harde H , DasM, JainS. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Exp. Opin. Drug Del.8(11), 1–18 (2011).
  • Gan Q , WangT, CochraneC, MccarronP. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf. B.44(2–3), 65–73 (2005).
  • Ying G-Q , Xiong W-Y, Wang H, Sun Y, Liu H-Z. Preparation, water solubility and antioxidant activity of branched-chain chitosan derivatives. Carbohyd. Polym.83(4), 1787–1796 (2011).
  • Abdelwahed W , DegobertG, StainmesseS, FessiH. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Del. Rev.58(15), 1688–1713 (2006).
  • Van De Weert M , HenninkWE, JiskootW. Protein instability in poly (lactic-co-glycolic acid) microparticles. Pharm. Res.17(10), 1159–1167 (2000).
  • Hopkins S , NiedergangF, Corthesy-TheulazI, KraehenbuhlJ. A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer‘s patch dendritic cells. Cell Microbiol.2(1), 59–68 (2000).
  • Tacken PJ , De Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10), 790–802 (2007).
  • Mcclean S , ProsserE, MeehanEet al. Binding and uptake of biodegradable poly-dl-lactide micro-and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci. 6(2), 153–163 (1998).
  • Mathiowitz E , JacobJS, JongYSet al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386(6623), 410–414 (1997).
  • Artursson P , LindmarkT, DavisSS, IllumL. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res.11(9), 1358–1361 (1994).
  • Dodane V , Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int. J. Pharm.182(1), 21–32 (1999).
  • Rieux AD , PourcelleV, CaniPD, Marchand-BrynaertJ, PréatV. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv. Drug Del. Rev.65(6), 833–844 (2013).
  • Des Rieux A , FievezV, GarinotM, SchneiderYJ, PréatV. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release116(1), 1–27 (2006).
  • Luo Z , LiP, DengJet al. Cationic polypeptide micelle-based antigen delivery system: a simple and robust adjuvant to improve vaccine efficacy. J. Control. Release 170(2), 259–267 (2013).
  • Mackay IR , RosenFS, AdaG. Vaccines and vaccination. N. Engl. J. Med.345(14), 1042–1053 (2001).
  • Leleux J , RoyK. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv. Healthc. Mater.2(1), 72–94 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.