88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanohybrids of Silver Particles on Clay Platelets Delaminate Pseudomonas Biofilms

, , , , , , , & show all
Pages 1019-1033 | Received 06 Jun 2012, Published online: 30 Jun 2014

References

  • Sutherland IW . The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol.9(5), 222–227 (2001).
  • Costerton JW , StewartP, GreenbergE. Bacterial biofilms: a common cause of persistent infections. Science284(5418), 1318–1322 (1999).
  • Gilbert P , DasJ, FoleyI. Biofilm susceptibility to antimicrobials. Adv. Dent. Res.11(1), 160–167 (1997).
  • Stewart PS . Multicellular resistance: biofilms. Trends Microbiol.9(5), 204 (2001).
  • Mah TF , O‘TooleGA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol.9(1), 34–39 (2001).
  • Matsukawa M , KunishimaY, TakahashiS, TakeyamaK, TsukamotoT. Bacterial colonization on intraluminal surface of urethral catheter. Urology65(3), 440–444 (2005).
  • Lyczak JB , CannonCL, PierGB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect.2(9), 1051–1060 (2000).
  • Kwong MS , EvansDJ, NiM, CowellBA, FleiszigSM. Human tear fluid protects against Pseudomonas aeruginosa keratitis in a murine experimental model. Infect. Immun.75(5), 2325–2332 (2007).
  • Su HL , LinSH, WeiJCet al. Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS One 6(6), e21125 (2011).
  • Su HL , ChouCC, HungDJet al. The disruption of bacterial membrane integrity through ROS generation induces by nanohybrids of silver and clay. Biomaterials 30(30), 5979–5987 (2009).
  • Ceri H , OlsonME, StremickCet al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37(6), 1771–1776 (1999).
  • Pamp SJ , GjermansenM, JohansenHK, Tolker-NielsenT. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol.68(1), 223–240 (2008).
  • Köhler T , CurtyLK, BarjaF, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol.182(21), 5990–5996 (2000).
  • Murray TS , KazmierczakBI. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol.188(19), 6995–7004 (2006).
  • Michaels B , TisaLS. Swarming motility by Photorhabdus temperata is influenced by environmental conditions and uses the same flagella as that used in swimming motility. Can. J. Microbiol.57(3), 196–203 (2011).
  • Preston MJ , FleiszigSM, ZaidiTSet al. Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice. Infect. Immun. 63(9), 3497–3501 (1995).
  • Lee EJ , CowellBA, EvansDJ, FleiszigSM. Contribution of ExsA-regulated factors to corneal infection by cytotoxic and invasive Pseudomonas aeruginosa in a murine scarification model. Invest. Ophthalmol. Vis. Sci.44(9), 3892–3898 (2003).
  • Karicherla P , HobdenJA. Nona-d-arginine therapy for Pseudomonas aeruginosa keratitis. Invest. Ophthalmol. Vis. Sci.50(1), 256–262 (2009).
  • Dart JK , SealDV. Pathogenesis and therapy of Pseudomonas aeruginosa keratitis. Eye (Lond.)2(Suppl. 2), S46–S55 (1988).
  • Haagensen JA , KlausenM, ErnstRKet al. Differentiation and distribution of colistin – and sodium dodecyl sulfate – tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189(1), 28–37 (2007).
  • Boles BR , HorswillAR. Staphylococcal biofilm disassembly. Trends Microbiol.19(9), 449–455 (2011).
  • Bohigian GM , FosterCS. Treatment of Pseudomonas keratitis in the rabbit with antibiotic-steroid combinations. Invest. Ophthalmol. Vis. Sci.16(6), 553–556 (1977).
  • Chiao SH , LinSH, ShenCIet al. Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection. Int. J. Nanomedicine 7, 2421–2432 (2012).
  • Zimmerli W , TrampuzA, OchsnerPE. Prosthetic-joint infections. N. Engl. J. Med.351(16), 1645–1654 (2004).
  • Sondi I , Salopek-SondiB. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci.275(1), 177–182 (2004).
  • Lönn-Stensrud J , LandinMA, BennecheT, PetersenFC, ScheieAA. Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J. Antimicrob. Chemother.63(2), 309–316 (2009).
  • Brogden KA . Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol.3(3), 238–250 (2005).
  • Shigeta M , TanakaG, KomatsuzawaHet al. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43(5), 340–345 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.