241
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improved Transfection in Human Mesenchymal Stem Cells: Effective Intracellular Release of pDNA by Magnetic Polyplexes

, , , , , & show all
Pages 999-1017 | Received 15 Aug 2012, Published online: 30 Jun 2014

References

  • Nesselmann C , LiW, MaN, SteinhoffG. Stem cell-mediated neovascularization in heart repair. Ther. Adv. Cardiovasc. Dis.4(1), 27–42 (2010).
  • Li W , MaN, OngLLet al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8), 2118–2127 (2007).
  • Silva GV , LitovskyS, AssadJAet al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111(2), 150–156 (2005).
  • Mangi AA , NoiseuxN, KongDet al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9(9), 1195–1201 (2003).
  • Wang W , LiW, OuLet al. Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. J. Cell Mol. Med. 15(9), 1989–1998 (2010).
  • Boulaiz H , MarchalJA, PradosJ, MelguizoC, AranegaA. Non-viral and viral vectors for gene therapy. Cell Mol. Biol.51(1), 3–22 (2005).
  • Al-Dosari MS , GaoX. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J.11(4), 671–681 (2009).
  • Mintzer MA , SimanekEE. Nonviral vectors for gene delivery. Chem. Rev.109(2), 259–302 (2009).
  • Scherer F , AntonM, SchillingerUet al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9(2), 102–109 (2002).
  • Li W , MaN, OngLLet al. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J. Gene Med. 10(8), 897–909 (2008).
  • Dobson J . Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine (Lond.)1(1), 31–37 (2006).
  • Delyagina E , LiW, MaN, SteinhoffG. Magnetic targeting strategies in gene delivery. Nanomedicine (Lond.)6(9), 1593–1604 (2011).
  • Bieber T , MeissnerW, KostinS, NiemannA, ElsasserHP. Intracellular route and transcriptional competence of polyethylenimine–DNA complexes. J. Control. Release82(2–3), 441–454 (2002).
  • van der Aa MA , HuthUS, HafeleSYet al. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res. 24(8), 1590–1598 (2007).
  • Godbey WT , WuKK, MikosAG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl Acad. Sci. USA96(9), 5177–5181 (1999).
  • Boussif O , Lezoualc‘hF, ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
  • Yang S , MayS. Release of cationic polymer-DNA complexes from the endosome: a theoretical investigation of the proton sponge hypothesis. J. Chem. Phys.129(18), 185105 (2008).
  • Arsianti M , LimM, MarquisCP, AmalR. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir26(10), 7314–7326 (2010).
  • Gaebel R , FurlaniD, SorgHet al. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One 6(2), e15652 (2011).
  • Manders EMM , VerbeekFJ, AtenJA. Measurement of colocalization of objects in dual-color confocal images. J. Microsc.169, 375–382 (1993).
  • Zhang Y , LiW, OuLet al. Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle–adenoviral vectors enhanced cardiac regeneration. PLoS One 7(7), e39490 (2012).
  • Kwok A , HartSL. Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine7(2), 210–219 (2011).
  • Oh YK , SuhD, KimJM, ChoiHG, ShinK, KoJJ. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Ther.9(23), 1627–1632 (2002).
  • Chen CB , ChenJY, LeeWC. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J. Nanosci. Nanotechnol.9(4), 2651–2659 (2009).
  • Rejman J , OberleV, ZuhornIS, HoekstraD. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J.377(Pt 1), 159–169 (2004).
  • Akinc A , ThomasM, KlibanovAM, LangerR. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med.7(5), 657–663 (2005).
  • Grosse S , ThevenotG, MonsignyM, FajacI. Which mechanism for nuclear import of plasmid DNA complexed with polyethylenimine derivatives? J. Gene Med.8(7), 845–851 (2006).
  • Huth S , LausierJ, GerstingSWet al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med. 6(8), 923–936 (2004).
  • Gustafsson MG . Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc.198(Pt 2), 82–87 (2000).
  • Gustafsson MG . Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA102(37), 13081–13086 (2005).
  • Jares-Erijman EA , JovinTM. FRET imaging. Nat. Biotechnol.21(11), 1387–1395 (2003).
  • Glover DJ , LeytonDL, MoseleyGW, JansDA. The efficiency of nuclear plasmid DNA delivery is a critical determinant of transgene expression at the single cell level. J. Gene Med.12(1), 77–85 (2010).
  • Pollard H , RemyJS, LoussouarnG, DemolombeS, BehrJP, EscandeD. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem.273(13), 7507–7511 (1998).
  • Clamme JP , KrishnamoorthyG, MelyY. Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochim. Biophys. Acta1617(1–2), 52–61 (2003).
  • Mannisto M , RonkkoS, MattoMet al. The role of cell cycle on polyplex-mediated gene transfer into a retinal pigment epithelial cell line. J. Gene Med. 7(4), 466–476 (2005).
  • Brunner S , SauerT, CarottaS, CottenM, SaltikM, WagnerE. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther.7(5), 401–407 (2000).
  • Abdallah B , HassanA, BenoistC, GoulaD, BehrJP, DemeneixBA. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther.7(16), 1947–1954 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.