151
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

Biphasic Magnetic Nanoparticles–Nanovesicle Hybrids for Chemotherapy and Self-Controlled Hyperthermia

, , &
Pages 955-970 | Received 15 May 2012, Published online: 30 Jun 2014

References

  • Jordan A , ScholzR, Maier-HauffKet al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225 (1–2), 118–126 (2001).
  • Schneiderman MH , HoferKG, SchneidermanGS. Targets for radiation-induced cell death: when DNA damage doesn‘t kill. Radiat. Res.155(4), 529–535 (2001).
  • Gogoi M , JaiswalMK, BanerjeeR, BahadurD. Magnetic nanovesicles and hydrogels towards cancer therapy. In: Magnetic Nanoparticles from Fabrication to Clinical Applications. Thanh NTK (Ed.). CRC Press, London, UK, 479–498 (2011).
  • Kizaka-Kondoh S , InoueM, HaradaH, HiraokaM. Tumor hypoxia: a target for selective cancer therapy. Cancer. Sci.94(12), 1021–1028 (2003).
  • Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005).
  • Bouzin C , FeronO. Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery. Drug Resist. Updat.10(3), 109–120 (2007).
  • Streffer C . Molecular and cellular mechanisms of hyperthermia. In: Thermoradiotherapy and Thermochemotherapy. Seegenschimicdt MH, Fessenden P, Vernon CC (Eds). Springer Verlag, Berlin, Germany, 47–74 (1995).
  • Hildebrandt B , WustP, AhlersOet al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
  • Kong G , DewhirstMW. Hyperthermia and nanovesicles. Int. J. Hyperthermia15(5), 345–370 (1999).
  • Kong G , BraunRD, DewhirstMW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res.61, 3027–3032 (2001).
  • Yanase M , ShinkaiM, HondaH, WakabayashiT, YoshidaJ, KobayashiT. Intracellular hyperthermia for cancer using magnetite cationic nanovesicles: an in vivo study. Jpn J. Cancer Res.89, 463–469 (1998).
  • Ito A , TanakaK, HondaH, AbeS, YamaguchiH, KobayashiT. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci. Bioeng.96(4), 364–369 (2003).
  • Pradhan P , GiriJ, RiekenFet al. Targeted temperature sensitive magnetic nanovesicles for thermo-chemotherapy. J. Control. Release 142(1), 108–121 (2010).
  • Dilnawaz F , SinghA, MohantyC, SahooSK. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials31(13), 3694–3706 (2010).
  • Kulshrestha P , GogoiM, BahadurD, BanerjeeR. In vitro application of paclitaxel loaded magnetonanovesicles for combined chemotherapy and hyperthermia. Colloid. Surf. B Biointerfaces96, 1–7 (2012).
  • Zhang J , MisraRDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater.3, 838–850 (2007).
  • Shido Y , NishidaY, SuzukiY, KobayashiT, IshiguroN. Targeted hyperthermia using magnetite cationic nanovesicles and an alternating magnetic field in a mouse osteosarcoma model. J. Bone Joint Surg. Br.92(4), 580–585 (2010).
  • Vasseur S , DuguetE, PortierJet al. Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J. Magn. Magn. Mater. 302(2), 315–320 (2006).
  • Liangruksa M , GangulyR, PuriIK. Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion. J. Magn. Magn. Mater.323(6), 708–716 (2011).
  • Kuznetsov AA , LeontievVG, BrukvinVAet al. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature. J. Magn. Magn. Mater. 311(1), 197–203 (2007).
  • Pollert E , KnízekK, MaryskoM, KasparP, VasseurS, DuguetE. New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J. Magn. Magn. Mater.316(2), 122–125 (2007).
  • Shlyakhtin OA , LeontievVG, OhY, KuznetsovAA. New manganite-based mediators for self-controlled magnetic heating. Smart Mater. Struct.16(5), N35–N39 (2007).
  • Prasad N , RathinasamyK, PandaD, BahadurD. Tc-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. J. Biomed. Mater. Res. B Appl. Biomater.85, 409–416 (2008).
  • Rowinsky EK , DonehowerRC. Paclitaxel (Taxol). N. Engl. J. Med.332, 1004–1014 (1995).
  • McMullen TPW , McElhaneyRN. Differential scanning calorimetric studies of the interaction of cholesterol with distearoyl and dielaidoyl molecular species of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Biochemistry36, 4979–4986 (1997)
  • Prasad NK , HardelL, DuguetE, BahadurD. Magnetic hyperthermia with biphasic gel of La1-xSrxMnO3 and maghemite. J. Magn. Magn. Mater.321, 1490–1492 (2009).
  • Shiigi SM , SlomichM. Heterologous antisera to mouse brain. In: Selected Methods in Cellular Immunology. Mishell BB, Shiigi MS (Eds). WH Freeman Co., CA, USA, 247–257 (1980).
  • Cullity BD , GrahamCD. Introduction to Magnetic Materials (2nd Edition). John Wiley & Sons Inc., NJ, USA (2008).
  • Vichai V , KirtikaraK. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc.1, 1112–1126 (2006).
  • Anand P , HuilgolN, BanerjeeR. Effect of fluidizing agents on paclitaxel penetration in cervical cancerous monolayer membranes. J. Membr. Biol.219, 83–91 (2007).
  • Zhang Y , TangL, SunLet al. A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater. 6, 2045–2052 (2009).
  • Jin C , BaiL, WuH, TianF, GuoG. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials28, 3724–3730 (2007).
  • Semple SC , ChonnA, CullisPR. Influence of cholesterol on the association of plasma proteins wit liposomes. Biochemistry35, 2521–2525 (1996).
  • Gabizon A , ChemlaM, TzemachD, HorowitzAT, GorenD. Nanovesicle longevity and stability in circulation: effects on the in vivo delivery to tumors and therapeutic efficacy of encapsulated anthracyclines. J. Drug Targeting3, 391–398 (1996).
  • Parr MJ , MasinD, CullisPR, BallyMB. Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating nanovesicles with poly(ethylene glycol). J. Pharmacol. Exp. Ther.280, 1319–1327 (1997).
  • Mayer LD , CullisPR, BallyMB. Designing therapeutically optimized liposomal anticancer delivery systems: lessons from conventional nanovesicles. In: Medical Applications of Nanovesicles. Lasic DD, Papahadjopoulos D (Eds). Elsevier, Amsterdam, The Netherlands, 231–257 (1998).
  • Hong RL , HuangCJ, TsengYLet al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 5, 3645–3652 (1999).
  • Kohler N , SunC, FichtenholtzA, GunnJ, FangC, ZhangM. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small2, 785–792 (2006).
  • Chouly C , PouliquenD, LucetI, JeuneJJ, JalletP. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul.13, 245–255 (1996).
  • Arias JL , RuizMA, GallardoV, DelgadoAV. Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles. J. Control. Release125, 50–58 (2008).
  • Kim SY , LeeYM. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials22, 1697–1704 (2001).
  • Chattopadhyay P , GuptaRB. Supercritical CO2 based production of magnetically responsive micro- and nanoparticles for drug targeting. Ind. Eng. Chem. Res.41, 6049–6058 (2002).
  • Zhu L , MaJ, JiaN, ZhaoY, ShenH. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloid. Surf. B Biointerface68, 1–6 (2009).
  • Luo S , ZhangE, SuY, ChengT, ShiC. A review of NIR dyes in cancer targeting and imaging. Biomaterials32, 7127–7138 (2011).
  • Links M , BrownR. Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev. Mol. Med.1999, 1–21 (1999).
  • Krishna R , MayerL. Applications of nanovesicle technology to overcome multidrug resistance in solid tumors. In: Targeting of Drugs 6: Strategies for Stealth Therapeutic Systems (NATO ASI Series). Gregoriadis G, McCormack B (Eds). Plenum Press, NY, USA, 95–108 (1998).
  • Prasad NK , RathinasamyK, PandaD, BahadurD. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2-xO3 synthesized by a single step process. J. Mater. Chem.17, 5042–5051 (2007).
  • Ito A , FujiokaM, YoshidaTet al. 4-S-cysteaminylphenol-loaded magnetite cationic nanovesicles for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Sci. 98, 424–430 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.