236
Views
2
CrossRef citations to date
0
Altmetric
Review

Rational Design of Gold Nanoparticle Toxicology Assays: A Question of Exposure Scenario, Dose and Experimental Setup

, , , &
Pages 1971-1989 | Published online: 24 Oct 2014

References

  • Dykman L , KhlebtsovN. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev.41 (6), 2256–2282 (2012).
  • Boisselier E , AstrucD. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev.38 (6), 1759–1782 (2009).
  • Barchanski A , TaylorU, KleinS, PetersenS, RathD, BarcikowskiS. Golden perspective: application of laser-generated gold nanoparticle conjugates in reproductive biology. Reprod. Domest. Anim.46, 42–52 (2011).
  • Zhang HY , JiZX, XiaTet al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano6 (5), 4349–4368 (2012).
  • Connor EE , MwamukaJ, GoleA, MurphyCJ, WyattMD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small1 (3), 325–327 (2005).
  • Shukla R , BansalV, ChaudharyM, BasuA, BhondeRR, SastryM. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir21 (23), 10644–10654 (2005).
  • Tiedemann D , TaylorU, RehbockCet al. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst139 (5), 931–942 (2014).
  • Cho WS , ChoM, JeongJet al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236 (1), 16–24 (2009).
  • Truong L , SailiKS, MillerJM, HutchisonJE, TanguayRL. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp. Biochem. Physiol. C Toxicol. Pharmacol.155 (2), 269–274 (2012).
  • Kim KT , ZaikovaT, HutchisonJE, TanguayRL. Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol. Sci.133 (2), 275–288 (2013).
  • Pan Y , NeussS, LeifertAet al. Size-dependent cytotoxicity of gold nanoparticles. Small3 (11), 1941–1949 (2007).
  • Oberdorster G , OberdorsterE, OberdorsterJ. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113 (7), 823–839 (2005).
  • Organisation for Economic Co-operation and Development . Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials. Series on the Safety of Manufactured Nanomaterials No. 36 . OECD Publications Service, Paris, France (2012).
  • Schleh C , Semmler-BehnkeM, LipkaJet al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology6 (1), 36–46 (2012).
  • Lipka J , Semmler-BehnkeM, SperlingRAet al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials31 (25), 6574–6581 (2010).
  • Chen CY , LiYF, QuY, ChaiZF, ZhaoYL. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem. Soc. Rev.42 (21), 8266–8303 (2013).
  • Khlebtsov N , DykmanL. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev.40 (3), 1647–1671 (2011).
  • Stone V , JohnstonH, SchinsRPF. Development of in vitro systems for nanotoxicology: methodological considerations. Crit. Rev. Toxicol.39 (7), 613–626 (2009).
  • Horie M , KatoH, FujitaK, EndohS, IwahashiH. in vitro evaluation of cellular response induced by manufactured nanoparticles. Chem. Res. Toxicol.25 (3), 605–619 (2012).
  • Joris F , ManshianBB, PeynshaertK, De SmedtSC, BraeckmansK, SoenenSJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem. Soc. Rev.42 (21), 8339–8359 (2013).
  • Taylor U , KleinS, PetersenS, KuesW, BarcikowskiS, RathD. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry A77A (5), 439–446 (2010).
  • Alkilany AM , MurphyCJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?J. Nanopart. Res.12 (7), 2313–2333 (2010).
  • Taylor U , BarchanskiA, PetersenSet al. Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration. Nanotoxicology doi:https://doi.org/10.3109/17435390.2013.859321 (2013) ( Epub ahead of print).
  • Petersen S , SollerJT, WagnerSet al. Co-transfection of plasmid DNA and laser-generated gold nanoparticles does not disturb the bioactivity of GFP–HMGB1 fusion protein. J. Nanobiotechnol.7, 6 (2009).
  • Stelzer R , HutzRJ. Gold nanoparticles enter rat ovarian granulosa cells and subcellular organelles, and alter in-vitro estrogen accumulation. J. Reprod. Dev.55 (6), 685–690 (2009).
  • Li WQ , WangF, LiuZM, WangYC, WangJ, SunF. Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small9 (9–10), 1708–1714 (2013).
  • Kim SW , KwakJI, AnYJ. Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ. Sci. Technol.47 (10), 5393–5399 (2013).
  • Wang Y , AkerWG, HwangHM, YedjouCG, YuH, TchounwouPB. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci. Total Environ.409 (22), 4753–4762 (2011).
  • Hanley C , LayneJ, PunnooseAet al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology19 (29), 295103 (2008).
  • Bregoli L , ChiariniF, GambarelliAet al. Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology262 (2), 121–129 (2009).
  • Hackenberg S , ScherzedA, TechnauA, FroelichK, HagenR, KleinsasserN. Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro. J. Biomed. Nanotechnol.9 (1), 86–95 (2013).
  • Campagnolo L , FenoglioI, MassimianiM, MagriniA, PietroiustiA. Screening of nanoparticle embryotoxicity using embryonic stem cells. Methods Mol. Biol.1058, 49–60 (2013).
  • Steiner S , MuellerL, PopovichevaOBet al. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol. Lett.214 (2), 218–225 (2012).
  • Eisenbrand G , Pool-ZobelB, BakerVet al. Methods of in vitro toxicology. Food Chem. Toxicol.40 (2–3), 193–236 (2002).
  • Borm P , KlaessigFC, LandryTDet al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci.90 (1), 23–32 (2006).
  • Nel A , XiaT, MadlerL, LiN. Toxic potential of materials at the nanolevel. Science311 (5761), 622–627 (2006).
  • Pan Y , LeifertA, RuauDet al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small5 (18), 2067–2076 (2009).
  • Coradeghini R , GioriaS, GarciaCPet al. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett.217 (3), 205–216 (2013).
  • Wang SG , LuWT, TovmachenkoO, RaiUS, YuHT, RayPC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett.463 (1–3), 145–149 (2008).
  • Zhang XD , WuD, ShenXet al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomed.6, 2071–2081 (2011).
  • Chen YS , HungYC, LiauI, HuangGS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett.4 (8), 858–864 (2009).
  • Patra HK , BanerjeeS, ChaudhuriU, LahiriP, DasguptaAK. Cell selective response to gold nanoparticles. Nanomedicine3 (2), 111–119 (2007).
  • Albanese A , TangPS, ChanWCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng.14, 1–16 (2012).
  • Chernousova S , EppleM. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl.52 (6), 1636–1653 (2013).
  • Alkilany AM , MurphyCJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?J. Nanopart. Res.12 (7), 2313–2333 (2010).
  • Han X , CorsonN, Wade-MercerPet al. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology297 (1–3), 1–9 (2012).
  • Oberdorster G . Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health74 (1), 1–8 (2001).
  • Stoeger T , ReinhardC, TakenakaSet al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect.114 (3), 328–333 (2006).
  • Tsoli M , KuhnH, BrandauW, EscheH, SchmidG. Cellular uptake and toxicity of AU(55) clusters. Small1 (8–9), 841–844 (2005).
  • Teeguarden JG , HinderliterPM, OrrG, ThrallBD, PoundsJG. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci.95 (2), 300–312 (2007).
  • Oberdorster G , FerinJ, LehnertBE. Correlation between particle-size, in-vivo particle persistence, and lung injury. Environ. Health Perspect.102, 173–179 (1994).
  • Faux SP , TranC-L, MillerBG, JonesAD, MonteillerC, DonaldsonK. In Vitro Determinants of Particulate Toxicity: The Dose-Metric for Poorly Soluble Dusts.Health and Safety Executive Books, Sudbury, UK (2003).
  • Barcikowski S , WalterJ, HahnAet al. Picosecond and femtosecond laser machining may cause health risks related to nanoparticle emission. J. Laser Micro Nanoeng.4 (3), 159–164 (2009).
  • Hinderliter PM , MinardKR, OrrGet al. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol.7 (1), 36 (2010).
  • Siddiqi NJ , AbdelhalimMA, El-AnsaryAK, AlhomidaAS, OngWY. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J. Neuroinflammation9, 123 (2012).
  • Rehbock C , JacobiJ, GamradLet al. Current state on laser synthesis of metal and alloy nanoparticles, qualified as ligand-free reference materials for nano-toxicological assays. Beilstein J. Nanotechnol.5, 1523–1541 (2014).
  • Deloid G , CohenJM, DarrahTet al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun.5, 3514 (2014).
  • James AE , DriskellJD. Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst138 (4), 1212–1218 (2013).
  • Choi SY , JeongS, JangSHet al. In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. Toxicol. In Vitro26 (2), 229–237 (2012).
  • Grade S , EberhardJ, NeumeisterAet al. Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. RSC Adv.2 (18), 7190–7196 (2012).
  • Hahn A , FuhlrottJ, LoosA, BarcikowskiS. Cytotoxicity and ion release of alloy nanoparticles. J. Nanopart. Res.14 (1), 1–10 (2012).
  • Albanese A , ChanWCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano5 (7), 5478–5489 (2011).
  • Cho EC , ZhangQ, XiaY. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol.6 (6), 385–391 (2011).
  • Camden JP , DieringerJA, WangYMet al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc.130 (38), 12616–12617 (2008).
  • Dominguez-Medina S , BlankenburgJ, OlsonJ, LandesCF, LinkS. Adsorption of a protein mono layer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain. Chem. Eng.1 (7), 833–842 (2013).
  • Perreault F , MelegariSP, FuzinattoCFet al. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models. Environ. Toxicol.29 (3), 328–336 (2014).
  • Vetten MA , TlotlengN, RascherDTet al. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part. Fibre Toxicol.10, 50 (2013).
  • Zhang XD , WuD, ShenX, LiuPX, FanFY, FanSJ. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials33 (18), 4628–4638 (2012).
  • Dobrovolskaia MA , PatriAK, ZhengJet al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine5 (2), 106–117 (2009).
  • Van Den Broek B , AshcroftB, OosterkampTH, Van NoortJ. Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy. Nano Lett.13 (3), 980–986 (2013).
  • Bao CC , BeziereN, Del PinoPet al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small9 (1), 68–74 (2013).
  • Abraham GE , HimmelPB. Management of rheumatoid arthritis: rationale for the use of colloidal metallic gold. J. Nutr. Environ. Med.7 (4), 295–305 (1997).
  • Turkevich J , GartonG, StevensonPC. The color of colloidal gold. J. Colloid Sci.9 (6), S26–S35 (1954).
  • Frens G . Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat. Phys. Sci.241 (105), 20–22 (1973).
  • Krebs HA . Chemical composition of blood plasma and serum. Annu. Rev. Biochem.19, 409–430 (1950).
  • Cho WS , ChoMJ, JeongJet al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236 (1), 16–24 (2009).
  • Goodman CM , MccuskerCD, YilmazT, RotelloVM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem.15 (4), 897–900 (2004).
  • Leifert A , PanY, KinkeldeyAet al. Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proc Natl Acad Sci. USA110 (20), 8004–8009 (2013).
  • Park J-W , Shumaker-ParryJS. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J. Am. Chem. Soc.136 (5), 1907–1921 (2014).
  • Brewer SH , GlommWR, JohnsonMC, KnagMK, FranzenS. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir21 (20), 9303–9307 (2005).
  • Ojea-Jimenez I , PuntesV. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J. Am. Chem. Soc.131 (37), 13320–13327 (2009).
  • Misra SK , DybowskaA, BerhanuD, LuomaSN, Valsami-JonesE. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ.438, 225–232 (2012).
  • Sweeney SF , WoehrleGH, HutchisonJE. Rapid purification and size separation of gold nanoparticles via diafiltration. J. Am. Chem. Soc.128 (10), 3190–3197 (2006).
  • Dalwadi G , BensonHA, ChenY. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res.22 (12), 2152–2162 (2005).
  • Balasubramanian SK , YangLM, YungLYL, OngCN, OngWY, YuLE. Characterization, purification, and stability of gold nanoparticles. Biomaterials31 (34), 9023–9030 (2010).
  • Amendola V , MeneghettiM. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys.11 (20), 3805–3821 (2009).
  • Amendola V , MeneghettiM. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?Phys. Chem. Chem. Phys.15 (9), 3027–3046 (2013).
  • Barcikowski S , CompagniniG. Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys.15 (9), 3022–3026 (2013).
  • Barcikowski S , DevesaF, MoldenhauerK. Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J. Nanopart. Res.11 (8), 1883–1893 (2009).
  • Muto H , YamadaK, MiyajimaK, MafuneF. Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water. J. Phys. Chem. C111 (46), 17221–17226 (2007).
  • Merk VM , RehbockC, BeckerF, HagemannU, NienhausH, BarcikowskiS. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: the effect of Hofmeister's anions. Langmuir30 (15) 4213–4222 (2014).
  • Wagener P , SchwenkeA, BarcikowskiS. How citrate ligands affect nanoparticle adsorption to microparticle supports. Langmuir28 (14), 6132–6140 (2012).
  • Cederquist KB , KeatingCD. Curvature effects in DNA: Au nanoparticle conjugates. ACS Nano3 (2), 256–260 (2009).
  • Barchanski A , HashimotoN, PetersenS, SajtiCL, BarcikowskiS. Impact of spacer and strand length on oligonucleotide conjugation to the surface of ligand-free laser-generated gold nanoparticles. Bioconjugate Chem.23 (5), 908–915 (2012).
  • Tenzer S , DocterD, KuharevJet al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol.8 (10), 772–781 (2013).
  • Barbour PSM , StoneMH, FisherJ. A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates. Proc. Inst. Mech. Eng. H213 (6), 455–467 (1999).
  • Brown C , WilliamsS, TipperJL, FisherJ, InghamE. Characterisation of wear particles produced by metal on metal and ceramic on metal hip prostheses under standard and microseparation simulation. J. Mater. Sci. Mater. Med.18 (5), 819–827 (2007).
  • Doorn PF , CampbellPA, WorrallJ, BenyaPD, McKellopHA, AmstutzHC. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res.42 (1), 103–111 (1998).
  • Behl B , PapageorgiouI, BrownCet al. Biological effects of cobalt–chromium nanoparticles and ions on dural fibroblasts and dural epithelial cells. Biomaterials34 (14), 3547–3558 (2013).
  • Menendez-Manjon A , BarcikowskiS. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Appl. Surf. Sci.257 (9), 4285–4290 (2011).
  • Hahn A , BarcikowskiS. Production of bioactive nanomaterial using laser generated nanoparticles. J. Laser Micro Nanoeng.4 (1), 51–54 (2009).
  • Jakobi J , PetersenS, Menendez-ManjonA, WagenerP, BarcikowskiS. Magnetic alloy nanoparticles from laser ablation in cyclopentanone and their embedding into a photoresist. Langmuir26 (10), 6892–6897 (2010).
  • Zhang J , OkoDN, GarbarinoSet al. Preparation of PtAu alloy colloids by laser ablation in solution and their characterization. J. Phys. Chem. C116 (24), 13413–13420 (2012).
  • Jakobi J , Menendez-ManjonA, ChakravadhanulaVSK, KienleL, WagenerP, BarcikowskiS. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Nanotechnology22 (14), 145601 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.