247
Views
0
CrossRef citations to date
0
Altmetric
Review

The Heritable Effects of Nanotoxicity

Pages 2829-2841 | Published online: 24 Oct 2014

References

  • Oberdorster G , OberdorsterE, OberdorsterJ. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113 (7), 823–839 (2005).
  • Krug HF , WickP. Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. Engl.50 (6), 1260–1278 (2011).
  • Pumera M . Nanotoxicology: the molecular science point of view. Chem. Asian j.6 (2), 340–348 (2011).
  • Raffa V , VittorioO, RiggioC, CuschieriA. Progress in nanotechnology for healthcare. Minim. Invasive Ther. Allied Technol.19 (3), 127–135 (2010).
  • Vega-Villa KR , TakemotoJK, YanezJA, RemsbergCM, ForrestML, DaviesNM. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev.60 (8), 929–938 (2008).
  • Singh N , ManshianB, JenkinsGJSet al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials30 (23–24), 3891–3914 (2009).
  • Stone V , JohnstonH, SchinsRP. Development of vitro systems for nanotoxicology: methodological considerations. Crit. Rev. Toxicol.39 (7), 613–626 (2009).
  • Landsiedel R , KappMD, SchulzM, WienchK, OeschF. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations – many questions, some answers. Mutat. Res.681 (2–3), 241–258 (2009).
  • Donaldson K , PolandCA, SchinsRP. Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology4, 414–420 (2010).
  • Ng CT , DheenST, YipWCG, OngCN, BayBH, YungLYL. The induction of epigenetic regulation of PROS1 gene in lung fibroblasts by gold nanoparticles and implications for potential lung injury. Biomaterials32 (30), 7609–7615 (2011).
  • Magdolenova Z , CollinsA, KumarA, DhawanA, StoneV, DusinskaM. Mechanisms of genotoxicity. a review of vitro and vivo studies with engineered nanoparticles. Nanotoxicology8 (3), 233–278 (2014).
  • Tino A , AmbrosoneA, MarchesanoV, TortiglioneC. Molecular bases of nanotoxicology. In : Bio- and Bioinspired Nanomaterials.Ruiz-MolinaD, NovioF, RosciniC. ( Eds). Wiley-VCH, Weinheim, Germany, 229–293 (2014).
  • Choi AO , BrownSE, SzyfM, MaysingerD. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med.86 (3), 291–302 (2008).
  • Meng J , XingJM, WangYZet al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in ivo treatment and in vitro analysis. Nanoscale3 (11), 4713–4719 (2011).
  • Ema M , KobayashiN, NayaM, HanaiS, NakanishiJ. Reproduction and developmental toxicity studies of manufactured nanomaterials. Reprod. Toxicol.30 (3), 343–352 (2010).
  • Sun J , ZhangQ, WangZ, YanB. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int. J. Mol. Sci.14 (5), 9319–9337 (2013).
  • Hougaard KS , PetraJ, KeldAJet al. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan): a study in mice. Part. Fibre Toxicol.7, 16 (2010).
  • Russell WMS , BurchRL, HumeCW. The Principles of Humane Experimental Technique. Methuen, London, UK (1959).
  • Giannaccini M , CuschieriA, DenteL, RaffaV. Non-mammalian vertebrate embryos as models in nanomedicine. Nanomedicine10 (4), 703–719 (2013).
  • Blaise C , GagnéF, FérardJ, EullaffroyP. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol.23 (5), 591–598 (2008).
  • Baun A , HartmannNB, GriegerK, KuskKO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology17 (5), 387–395 (2008).
  • Lin S , ZhaoY, JiZet al. Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small9 (9–10), 1776–1785 (2013).
  • Arndt DA , ChenJ, MouaM, KlaperRD. Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Environ. Toxicol. Chem.33 (3), 541–547 (2014).
  • Lee SW , KimSM, ChoiJ. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol.28 (1), 86–91 (2009).
  • Adam N , SchmittC, GalceranJet al. The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology8 (7), 709–717 (2014).
  • Stensberg MC , MadangopalR, YaleGet al. Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology8 (8), 833–842 (2014).
  • Lin S , WangX, JiZet al. Aspect ratio plays a role in the hazard potential of CeO2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano8 (5), 4450–4464 (2014).
  • Ambrosone A , TortiglioneC. Methodological approaches for nanotoxicology using cnidarian models. Toxicol. Mech. Methods23 (3), 207–216 (2013).
  • Tortiglione : An ancient model organism to test vivo novel functional nanocrystals. In : Biomedical Engineering: From Theory to ApplicationFazel-RezaiR. ( Ed.). InTech, Rijeka, Croatia, 225–252 (2011).
  • Khalturin K , Anton-ErxlebenF, MildeSet al. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Develop. Biol.309 (1), 32–44 (2007).
  • Ambrosone A , MarchesanoV, TinoA, HobmayerB, TortiglioneC. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris. PLoS ONE7 (1), e30660 (2012).
  • Chera S , De RosaR, Miljkovic-LicinaMet al. Silencing of the Hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J. Cell Sci.119 (Pt 5), 846–857 (2006).
  • Wilby O , TeshJm. The Hydra assay as an early screen for teratogenic potential. Toxicol. Vitro4 (4–5), 582–583 (1990).
  • Pollino CA , HoldwayDA. Potential of two Hydra species as standard toxicity test animals. Ecotoxicol. Environ. Safety43 (3), 309–316 (1999).
  • Karntanut W , PascoeD. The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa). Chemosphere47 (10), 1059–1064 (2002).
  • Tortiglione C , QuartaA, MalvindiMA, TinoA, PellegrinoT. Fluorescent nanocrystals reveal regulated portals of entry into and between the cells of Hydra. PLoS ONE4 (11), e7698 (2009).
  • Ambrosone A , MatteraL, MarchesanoVet al. Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials33 (7), 1991–2000 (2012).
  • Tino A , AmbrosoneA, MatteraLet al. A new vivo model system to assess the toxicity of semiconductor nanocrystals. Int. J. Biomater.2011, 792854 (2011).
  • Ambrosone A , Marchesano, V, Mattera, L, Tino, A, Tortiglione, C. Bridging the fields nanoscience toxicology: nanoparticle impact on biological models. In : Colloidal Quantum Dots/Nanocrystals for Biomedical Applications VI, ParakWJ, YamamotoK, OsinskiM. ( Eds). SPIE, Bellingham, WA, USA (2011).
  • Genikhovich G , TechnauU. Induction of spawning in the starlet sea anemone Nematostella vectensis, vitro fertilization of gametes, and dejellying of zygotes. Cold Spring Harb. Proto.2009 (9), pdb prot5281 (2009).
  • Ambrosone A , MarchesanoV, MazzarellaV, TortiglioneC. Nanotoxicology using the sea anemone Nematostella vectensis: from developmental toxicity to genotoxicology. Nanotoxicology8 (5), 508–520 (2014).
  • Schwaiger M , SchonauerA, RendeiroAFet al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res.24 (4), 639–650 (2014).
  • Su Y , HuM, FanCet al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials31 (18), 4829–4834 (2010).
  • King-Heiden TC , WiecinskiPN, ManghamANet al. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol.43 (5), 1605–1611 (2009).
  • Moulis JM , ThevenodF. New perspectives in cadmium toxicity: an introduction. Biometals23 (5), 763–768 (2010).
  • Posgai R , Cipolla-MccullochC, MurphyK, HussainS, RoweJ, NielsenM. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, Reprod. effort, and viability: size, coatings and antioxidants matter. Chemosphere85 (1), 34–42 (2011).
  • Philbrook N , WinnL, AfroozA, SalehN, WalkerV. The effect of TiO(2) and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol. Appl. Pharmacol.257 (3), 429–436 (2011).
  • Gorth D , RandD, WebsterT. Silver nanoparticle toxicity in Drosophila: size does matter. Int. J. Nanomedicine6, 343–350 (2011).
  • Vales G , DemirE, KayaB, CreusA, MarcosR. Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology7 (4), 462–468 (2013).
  • Vecchio G , GaleoneA, BrunettiVet al. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine8 (1), 1–7 (2012).
  • Kim S , KwakJ, AnY-J. Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ. Sci. Technol.47 (10), 5393–5399 (2013).
  • Qu Y , LiW, ZhouYet al. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett.11 (8), 3174–3183 (2011).
  • Mohan N , ChenC-S, HsiehH-H, WuY-C, ChangH-C. vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett.10 (9), 3692–3699 (2010).
  • Holden PA , NisbetRM, LenihanHSet al. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc. Chem. Res.46 (3), 813–822 (2013).
  • Thomas CR , GeorgeS, HorstAMet al. Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano5 (1), 13–20 (2011).
  • King-Heiden T , WiecinskiP, ManghamAet al. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol.43 (5), 1605–1611 (2009).
  • Asharani P , LianwuY, GongZ, ValiyaveettilS. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology5 (1), 43–54 (2011).
  • Bar-Ilan O , LouisKM, YangSPet al. Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology6 (6), 670–679 (2012).
  • Bar-Ilan O , AlbrechtRM, FakoVE, FurgesonDY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small5 (16), 1897–1910 (2009).
  • Bar-Ilan O , ChuangCC, SchwahnDJet al. TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. Environ. Sci. Technol.47 (9), 4726–4733 (2013).
  • Duan J , YuY, LiY, YuY, SunZ. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials34 (23), 5853–5862 (2013).
  • Lin SJ , ZhaoY, NelAE, LinS. Zebrafish: an vivo model for nano EHS studies. Small9 (9–10), 1608–1618 (2013).
  • George S , XiaT, RalloRet al. Use of a high-throughput screening approach coupled with vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano5 (3), 1805–1817 (2011).
  • Asharani P , Lian WuY, GongZ, ValiyaveettilS. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology19 (25), 255102 (2008).
  • Truong L , TiltonSC, ZaikovaTet al. Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology7 (2), 192–201 (2013).
  • Nelson S , MahmoudT, BeauxM, ShapiroP, McIlroyD, StenkampD. Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomedicine6 (1), 93–102 (2010).
  • Kyjovska ZO , BoisenAM, JacksonP, WallinH, VogelU, HougaardKS. Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod. Toxicol.36, 88–97 (2013).
  • Boisen AM , ShipleyT, JacksonPet al. NanoTiO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice. Part. Fibre Toxicol.9, 19 (2012).
  • Boisen AM , ShipleyT, JacksonPet al. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells. Reprod. Toxicol.41, 45–48 (2013).
  • Hougaard KS , JacksonP, KyjovskaZOet al. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy: a study in mice. Reprod. Toxicol.41, 86–97 (2013).
  • Jackson P , HougaardKS, BoisenAMet al. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring. Nanotoxicology6 (5), 486–500 (2012).
  • Jackson P , HougaardKS, VogelUet al. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat. Res.745 (1–2), 73–83 (2012).
  • Jackson P , VogelU, WallinH, HougaardKS. Prenatal exposure to carbon black (Printex 90): effects on sexual development and neurofunction. Basic Clin. Pharmacol. Toxicol.109 (6), 434–437 (2011).
  • Chu M , WuQ, YangHet al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small6 (5), 670–678 (2010).
  • Chan WH , ShiaoNH. Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol. Sin.29 (2), 259–266 (2008).
  • Refuerzo JS , GodinB, BishopKet al. Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am. J. Obstet. Gynecol.204 (6), 546e545–e549 (2011).
  • Yamashita K , YoshiokaY, HigashisakaKet al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol.6 (5), 321–328 (2011).
  • Tian F , RazanskyD, EstradaGGet al. Surface modification and size dependence in particle translocation during early embryonic development. Inhal. Toxicol.21 (Suppl. 1), 92–96 (2009).
  • Yu WJ , SonJM, LeeJet al. Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats. Nanotoxicology8 (Suppl. 1), 85–91 (2013).
  • Campagnolo L , MassimianiM, MagriniA, CamaioniA, PietroiustiA. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials. Curr. Med. Chem.19 (26), 4488–4494 (2012).
  • Buerki-Thurnherr T , Von MandachU, WickP. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med. Wkly142, w13559 (2012).
  • Wick P , MalekA, ManserPet al. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect.118 (3), 432–436 (2010).
  • Saunders M . Transplacental transport of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.1 (6), 671–684 (2009).
  • Pietroiusti A , CampagnoloL, FadeelB. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small9 (9–10), 1557–1572 (2013).
  • Yoshida S , HiyoshiK, OshioS, TakanoH, TakedaK, IchinoseT. Effects of fetal exposure to carbon nanoparticles on reproduction function in male offspring. Fertil. Steril.93 (5), 1695–1699 (2010).
  • Fujitani T , OhyamaK-I, HiroseA, NishimuraT, NakaeD, OgataA. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci.37 (1), 81–89 (2012).
  • Pietroiusti A , MassimianiM, FenoglioIet al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano5 (6), 4624–4633 (2011).
  • Campagnolo L , MassimianiM, PalmieriGet al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part. Fibre Toxicol.10 (1), 21 (2013).
  • Liu J , ErogbogboF, YongKTet al. Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano7 (8), 7303–7310 (2013).
  • Yong KT , LawWC, HuRet al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem. Soc. Rev.42 (3), 1236–1250 (2013).
  • Ye L , YongK-T, LiuLet al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol.7 (7), 453–458 (2012).
  • Chou L , ChanW. Nanotoxicology: no signs of illness. Nat. Nanotechnol.7 (7), 416–417 (2012).
  • Philbrook N , WalkerV, AfroozA, SalehN, WinnL. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod. Toxicol.32 (4), 442–448 (2011).
  • Takahashi Y , MizuoK, ShinkaiY, OshioS, TakedaK. Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cortex and neostriatum of mice. J. Toxicol. Sci.35 (5), 749–756 (2010).
  • Takeda K , SuzukiK-I, IshiharaAet al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Health Sci.55 (1), 95–102 (2009).
  • Balansky R , LongobardiM, GanchevGet al. Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice. Mutat. Res.751–752, 42–48 (2013).
  • Mathias FT , RomanoRM, KizysMMet al. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproduction parameters. Nanotoxicology doi: 10.3109/17435390.2014.889237 (2014) ( Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.