255
Views
0
CrossRef citations to date
0
Altmetric
Review

Sequence-Defined Polymers for The Delivery of Oligonucleotides

&
Pages 2843-2859 | Published online: 23 Dec 2014

References

  • Bader AG , BrownD, WinklerM. The promise of microRNA replacement therapy. Cancer Res.70 (18), 7027–7030 (2010).
  • Bennett CF , SwayzeEE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol.50, 259–293 (2010).
  • Muntoni F , WoodMJ. Targeting RNA to treat neuromuscular disease. Nat. Rev. Drug Discov.10 (8), 621–637 (2011).
  • Kole R , KrainerAR, AltmanS. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov.11 (2), 125–140 (2012).
  • Watts JK , CoreyDR. Silencing disease genes in the laboratory and the clinic. J. Pathol.226 (2), 365–379 (2012).
  • Juliano RL , MingX, NakagawaO. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug. Chem.23 (2), 147–157 (2012).
  • Geary RS . Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab. Toxicol.5 (4), 381–391 (2009).
  • Burnett JC , RossiJJ. RNA-based therapeutics: current progress and future prospects. Chem. Biol.19 (1), 60–71 (2012).
  • Whitehead KA , LangerR, AndersonDG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8 (2), 129–138 (2009).
  • Wagner E . Biomaterials in RNAi therapeutics: quo vadis?Biomater. Sci.1, 804–809 (2013).
  • Jarver P , CoursindelT, AndaloussiSE, GodfreyC, WoodMJ, GaitMJ. Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA. Mol. Ther. Nucleic Acids1, e27 (2012).
  • Kanasty R , DorkinJR, VegasA, AndersonD. Delivery materials for siRNA therapeutics. Nat. Mater.12 (11), 967–977 (2013).
  • Pack DW , HoffmanAS, PunS, StaytonPS. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov.4 (7), 581–593 (2005).
  • Lehto T , KurrikoffK, LangelU. Cell-penetrating peptides for the delivery of nucleic acids. Expert opin drug deliv.9 (7), 823–836 (2012).
  • Lebleu B , MoultonHM, AbesRet al. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv. Drug Deliv. Rev.60 (4–5), 517–529 (2008).
  • Turner JJ , JonesS, FabaniMM, IvanovaG, ArzumanovAA, GaitMJ. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis.38 (1), 1–7 (2007).
  • Gao K , HuangL. Nonviral methods for siRNA delivery. Mol. Pharm.6 (3), 651–658 (2009).
  • Wightman L , KircheisR, RosslerVet al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med.3 (4), 362–372 (2001).
  • Werth S , Urban-KleinB, DaiLet al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J. Control. Release112 (2), 257–270 (2006).
  • Merrifield RB . Solid Phase Peptide Synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc.85 (14), 2149–2154 (1963).
  • Kwok A , HartSL. Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. 7 (2), 210–219 (2011).
  • Alexis F , PridgenE, MolnarLK, FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5 (4), 505–515 (2008).
  • Hamidi M , AzadiA, RafieiP. Pharmacokinetic consequences of pegylation. Drug Deliv.13 (6), 399–409 (2006).
  • Burke RS , PunSH. Extracellular Barriers to in vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. Bioconjug. Chem.19 (3), 693–704 (2008).
  • Wagner E . Polymers for siRNA Delivery: Inspired by viruses to be targeted, dynamic, and precise. Acc. Chem. Res.45 (7), 1005–1013 (2012).
  • Wagner E . Effects of membrane-active agents in gene delivery. J. Control. Release53 (1–3), 155–158 (1998).
  • Akinc A , ThomasM, KlibanovAM, LangerR. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med.7 (5), 657–663 (2005).
  • Wagner E , PlankC, ZatloukalK, CottenM, BirnstielML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl Acad. Sci. USA89 (17), 7934–7938 (1992).
  • Farhood H , SerbinaN, HuangL. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer 1. Biochim. Biophys. Acta1235 (2), 289–295 (1995).
  • Schaffert D , TroiberC, SalcherEEet al. Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew. Chem. Int. Ed. Engl.50 (38), 8986–8989 (2011).
  • Rydstrom A , DeshayesS, KonateKet al. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PloS One6 (10), e25924 (2011).
  • Juliano RL , MingX, CarverK, LaingB. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther.24 (2), 101–113 (2014).
  • Klein PM , WagnerE. Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxid. Redox Signal.21 (5), 804–817 (2014).
  • Lindgren M , LangelU. Classes and prediction of cell-penetrating peptides. Methods Mol. Biol.683, 3–19 (2011).
  • Heitz F , MorrisMC, DivitaG. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol.157 (2), 195–206 (2009).
  • Said Hassane F , SalehAF, AbesR, GaitMJ, LebleuB. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol. Life Sci.67 (5), 715–726 (2010).
  • Astriab-Fisher A , SergueevD, FisherM, ShawBR, JulianoRL. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res.19 (6), 744–754 (2002).
  • Moulton HM , HaseMC, SmithKM, IversenPL. HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev.13 (1), 31–43 (2003).
  • Abes S , MoultonHM, ClairPet al. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J. Control. Release116 (3), 304–313 (2006).
  • Moulton HM , FletcherS, NeumanBWet al. Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo. Biochem. Soc. Trans.35 (Pt 4), 826–828 (2007).
  • Fletcher S , HoneymanK, FallAMet al. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol. Ther.15 (9), 1587–1592 (2007).
  • Yin H , MoultonHM, SeowYet al. Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum. Mol. Genet.17 (24), 3909–3918 (2008).
  • Jearawiriyapaisarn N , MoultonHM, BuckleyBet al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol. Ther.16 (9), 1624–1629 (2008).
  • Moulton HM , MoultonJD. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim. Biophys. Acta1798 (12), 2296–2303 (2010).
  • Yin H , MoultonHM, BettsCet al. A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum. Mo.l Genet.18 (22), 4405–4414 (2009).
  • Ivanova GD , ArzumanovA, AbesRet al. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res.36 (20), 6418–6428 (2008).
  • Yin H , SalehAF, BettsCet al. Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther.19 (7), 1295–1303 (2011).
  • Betts C , SalehAF, ArzumanovAAet al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Nucleic Acids1, e38 (2012).
  • Lehto T , Castillo AlvarezA, GauckSet al. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res.42 (5), 3207–3217 (2013).
  • Morcos PA , LiY, JiangS. Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques45 (6), 613–614, 616, 618 passim (2008).
  • Wu B , LiY, MorcosPA, DoranTJ, LuP, LuQL. Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol. Ther.17 (5), 864–871 (2009).
  • Yokota T , NakamuraA, NagataTet al. Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther.22 (5), 306–315 (2012).
  • Zhou H , JanghraN, MitrpantCet al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum. Gene Ther.24 (3), 331–342 (2013).
  • Crombez L , MorrisMC, DufortSet al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res.37 (14), 4559–4569 (2009).
  • Crombez L , Aldrian-HerradaG, KonateKet al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther.17 (1), 95–103 (2009).
  • Deshayes S , KonateK, RydstromAet al. Self-assembling peptide-based nanoparticles for siRNA delivery in primary cell lines. Small8 (14), 2184–2188 (2012).
  • Mae M , El AndaloussiS, LundinPet al. A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J. Control. Release134 (3), 221–227 (2009).
  • Andaloussi SE , LehtoT, MagerIet al. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res.39 (9), 3972–3987 (2011).
  • Ezzat K , AndaloussiSE, ZaghloulEMet al. PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res.39 (12), 5284–5298 (2011).
  • Lehto T , AbesR, OskolkovNet al. Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. J Control Release141 (1), 42–51 (2010).
  • Ren Y , CheungHW, Von MaltzhanGet al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci. Transl Med.4 (147), 147ra112 (2012).
  • Hartmann L , KrauseE, AntoniettiM, BornerHG. Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules7 (4), 1239–1244 (2006).
  • Hartmann L , HäfeleS, Peschka-SüssR, AntoniettiM, BörnerHG. Sequence positioning of disulfide linkages to program the degradation of monodisperse poly(amidoamines). Macromolecules40 (22), 7771–7776 (2007).
  • Hartmann L , HafeleS, Peschka-SussR, AntoniettiM, BornerHG. Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chemistry14 (7), 2025–2033 (2008).
  • Frohlich T , EdingerD, KlagerRet al. Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J. Control. Release160 (3), 532–541 (2012).
  • Troiber C , EdingerD, KosPet al. Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials34 (5), 1624–1633 (2013).
  • Lachelt U , KosP, MicklerFMet al. Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. 10 (1), 35–44 (2014).
  • Scholz C , KosP, WagnerE. Comb-like oligoaminoethane carriers: change in topology improves pDNA delivery. Bioconjug. Chem.25 (2), 251–261 (2014).
  • Scholz C , KosP, LeclercqL, JinX, CottetH, WagnerE. Correlation of length of linear oligo(ethanamino) amides with gene transfer and cytotoxicity. Chem. Med. Chem. doi: https://doi.org/10.1002/cmdc.201300483 (2014) ( Epub ahead of print).
  • Dohmen C , EdingerD, FrohlichTet al. Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery. ACS Nano6 (6), 5198–5208 (2012).
  • Leng Q , ScariaP, ZhuJ, AmbulosN, CampbellP, MixsonAJ. Highly branched HK peptides are effective carriers of siRNA. J. Gene Med.7 (7), 977–986 (2005).
  • Leng Q , MixsonAJ. Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther.12 (8), 682–690 (2005).
  • Leng Q , ScariaP, LuP, WoodleMC, MixsonAJ. Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther.15 (8), 485–495 (2008).
  • Chou ST , LengQ, ScariaP, WoodleM, MixsonAJ. Selective modification of HK peptides enhances siRNA silencing of tumor targets in vivo. Cancer Gene Ther.18 (10), 707–716 (2011).
  • Chou ST , LengQ, ScariaPet al. Surface-modified HK.siRNA nanoplexes with enhanced pharmacokinetics and tumor growth inhibition. Biomacromolecules14 (3), 752–760 (2013).
  • Wang XL , RamusovicS, NguyenT, LuZR. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery. Bioconjug. Chem.18 (6), 2169–2177 (2007).
  • Wang XL , XuR, LuZR. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery. J. Control. Release134 (3), 207–213 (2009).
  • Wang XL , XuR, WuX, GillespieD, JensenR, LuZR. Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol. Pharm.6 (3), 738–746 (2009).
  • Wu RP , YoungbloodDS, HassingerJNet al. Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res.35 (15), 5182–5191 (2007).
  • Yin H , MoultonHM, BettsCet al. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Mol. Ther.18 (10), 1822–1829 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.