414
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in Studies of Nanoparticle–Biomembrane Interactions

, , , , , & show all
Pages 121-141 | Published online: 19 Jan 2015

References

  • Kokura S , HandaO , TakagiT , IshikawaT , NaitoY , YoshikawaT . Silver nanoparticles as a safe preservative for use in cosmetics . Nanomed. Nanotechnol. Biol. Med.6 ( 4 ), 570 – 574 ( 2010 ).
  • Pereira C , AlvesC , MonteiroAet al. Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles . ACS Appl. Mater. Interfaces3 ( 7 ), 2289 – 2299 ( 2011 ).
  • Cárdenas C , TobónJI , GarcíaC , VilaJ . Functionalized building materials: photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles . Constr. Build. Mater.36 , 820 – 825 ( 2012 ).
  • Chen Y , DingX , Steven LinS-Cet al. Tunable nanowire patterning using standing surface acoustic waves . ACS Nano7 ( 4 ), 3306 – 3314 ( 2013 ).
  • Doane TL , BurdaC . The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy . Chem. Soc. Rev.41 ( 7 ), 2885 – 2911 ( 2012 ).
  • Schinwald A , MurphyFA , JonesA , MacneeW , DonaldsonK . Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties . ACS Nano6 ( 1 ), 736 – 746 ( 2011 ).
  • Baroli B . Penetration of nanoparticles and nanomaterials in the skin: fiction or reality?J. Pharm. Sci.99 ( 1 ), 21 – 50 ( 2010 ).
  • Lipka J , Semmler-BehnkeM , SperlingRAet al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection . Biomaterials31 ( 25 ), 6574 – 6581 ( 2010 ).
  • Peer D , KarpJM , HongS , FarokhzadOC , MargalitR , LangerR . Nanocarriers as an emerging platform for cancer therapy . Nat. Nanotechnol.2 ( 12 ), 751 – 760 ( 2007 ).
  • Brannon-Peppas L , BlanchetteJO . Nanoparticle and targeted systems for cancer therapy . Adv. Drug Deliv. Rev.56 , ( 11 ), 1649 – 1659 ( 2004 ).
  • Nam J , WonN , JinH , ChungH , KimS . pH-induced aggregation of gold nanoparticles for photothermal cancer therapy . J. Am. Chem. Soc.131 ( 38 ), 13639 – 13645 ( 2009 ).
  • Dickson KK , DiegoAR , CarlAB . Gold hybrid nanoparticles for targeted phototherapy and cancer imaging . Nanotechnology21 ( 10 ), 105105 ( 2010 ).
  • Lewinski N , ColvinV , DrezekR . Cytotoxicity of nanoparticles . Small4 ( 1 ), 26 – 49 ( 2008 ).
  • Leroueil PR , BerrySA , DuthieKet al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers . Nano Lett.8 ( 2 ), 420 – 424 ( 2008 ).
  • Pan Y , LeifertA , RuauDet al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage . Small5 ( 18 ), 2067 – 2076 ( 2009 ).
  • Wang T , BaiJ , JiangX , NienhausGU . Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry . ACS Nano6 ( 2 ), 1251 – 1259 ( 2012 ).
  • Cho EC , ZhangQ , XiaY . The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles . Nat. Nanotechnol.6 ( 6 ), 385 – 391 ( 2011 ).
  • Deloid G , CohenJM , DarrahTet al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry . Nat. Commun.5 , 3514 ( 2014 ).
  • Yi X , ShiX , GaoH . Cellular uptake of elastic nanoparticles . Phys. Rev. Lett.107 ( 9 ), 098101 ( 2011 ).
  • Shi X , Von Dem BusscheA , HurtRH , KaneAB , GaoH . Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation . Nat. Nanotechnol.6 ( 11 ), 714 – 719 ( 2011 ).
  • Yang K , MaY-Q . Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer . Nat. Nanotechnol.5 ( 8 ), 579 – 583 ( 2010 ).
  • Qu ZG , HeXC , LinMet al. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling . Nanomedicine (Lond.)8 ( 6 ), 995 – 1011 ( 2013 ).
  • He X , QuZ , XuFet al. Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages . Soft Matter10 ( 1 ), 139 – 148 ( 2014 ).
  • Li S , MalmstadtN . Deformation and poration of lipid bilayer membranes by cationic nanoparticles . Soft Matter9 ( 20 ), 4969 – 4976 ( 2013 ).
  • Goodman CM , MccuskerCD , YilmazT , RotelloVM . Toxicity of gold nanoparticles functionalized with cationic and anionic side chains . Bioconjug. Chem.15 ( 4 ), 897 – 900 ( 2004 ).
  • Vevers W , JhaA . Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro . Ecotoxicology17 ( 5 ), 410 – 420 ( 2008 ).
  • Mecke A , UppuluriS , SassanellaTMet al. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers . Chem. Phys. Lipids132 ( 1 ), 3 – 14 ( 2004 ).
  • Yu J , PatelSA , DicksonRM . In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters . Angew. Chem. Int. Ed. Engl.119 ( 12 ), 2074 – 2076 ( 2007 ).
  • Mu Q , BroughtonDL , YanB . Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake . Nano Lett.9 ( 12 ), 4370 – 4375 ( 2009 ).
  • Foerg C , MerkleHP . On the biomedical promise of cell penetrating peptides: limits versus prospects . J. Pharm. Sci.97 ( 1 ), 144 – 162 ( 2008 ).
  • Cherukuri P , BachiloSM , LitovskySH , WeismanRB . Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells . J. Am. Chem. Soc.126 ( 48 ), 15638 – 15639 ( 2004 ).
  • Jin H , HellerDA , StranoMS . Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells . Nano Lett.8 ( 6 ), 1577 – 1585 ( 2008 ).
  • Shukla R , BansalV , ChaudharyM , BasuA , BhondeRR , SastryM . Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview . Langmuir21 ( 23 ), 10644 – 10654 ( 2005 ).
  • Dausend J , MusyanovychA , DassMet al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells . Macromol. Biosci.8 ( 12 ), 1135 – 1143 ( 2008 ).
  • Harush-Frenkel O , DebottonN , BenitaS , AltschulerY . Targeting of nanoparticles to the clathrin-mediated endocytic pathway . Biochem. Biophys. Res. Commun.353 ( 1 ), 26 – 32 ( 2007 ).
  • Slowing I , TrewynBG , LinVSY . Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells . J. Am. Chem. Soc.128 ( 46 ), 14792 – 14793 ( 2006 ).
  • Rosenholm JM , MeinanderA , PeuhuEet al. Targeting of porous hybrid silica nanoparticles to cancer cells . ACS Nano3 ( 1 ), 197 – 206 ( 2008 ).
  • Verma A , StellacciF . Effect of surface properties on nanoparticle–cell interactions . Small6 ( 1 ), 12 – 21 ( 2010 ).
  • Cheng LC , JiangX , WangJ , ChenC , LiuRS . Nano–bio effects: interaction of nanomaterials with cells . Nanoscale5 ( 9 ), 3547 – 3569 ( 2013 ).
  • Zhao Y , SunX , ZhangG , TrewynBG , SlowingII , LinVSY . Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects . ACS Nano5 ( 2 ), 1366 – 1375 ( 2011 ).
  • Safi M , CourtoisJ , SeigneuretM , ConjeaudH , BerretJF . The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles . Biomaterials32 ( 35 ), 9353 – 9363 ( 2011 ).
  • Li Y , YuanH , Von Dem BusscheAet al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites . Proc. Natl Acad. Sci. USA110 ( 30 ), 12295 – 12300 ( 2013 ).
  • Gupta A , CurtisAG . Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture . J. Mater. Sci. Mater. Med.15 ( 4 ), 493 – 496 ( 2004 ).
  • Xiao X , MontañoGA , EdwardsTLet al. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies . Langmuir28 ( 50 ), 17396 – 17403 ( 2012 ).
  • Kycia AH , WangJ , MerrillAR , LipkowskiJ . Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer . Langmuir27 ( 17 ), 10867 – 10877 ( 2011 ).
  • Erickson B , DimaggioSC , MullenDGet al. Interactions of poly(amidoamine) dendrimers with survanta lung surfactant: the importance of lipid domains . Langmuir24 ( 19 ), 11003 – 11008 ( 2008 ).
  • Peetla C , RaoKS , LabhasetwarV . Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles . Mol. Pharm.6 ( 5 ), 1311 – 1320 ( 2009 ).
  • Roiter Y , OrnatskaM , RammohanAR , BalakrishnanJ , HeineDR , MinkoS . Interaction of nanoparticles with lipid membrane . Nano Lett.8 ( 3 ), 941 – 944 ( 2008 ).
  • Hong S , BielinskaAU , MeckeAet al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport . Bioconjug. Chem.15 ( 4 ), 774 – 782 ( 2004 ).
  • Hong S , LeroueilPR , JanusEKet al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability . Bioconjug. Chem.17 ( 3 ), 728 – 734 ( 2006 ).
  • Mecke A , LeeD-K , RamamoorthyA , OrrBG , Banaszak HollMM . Synthetic and natural polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers . Langmuir21 ( 19 ), 8588 – 8590 ( 2005 ).
  • Roiter Y , OrnatskaM , RammohanAR , BalakrishnanJ , HeineDR , MinkoS . Interaction of lipid membrane with nanostructured surfaces . Langmuir25 ( 11 ), 6287 – 6299 ( 2009 ).
  • Morandat S , AzouziS , BeauvaisE , MastouriA , El KiratK . Atomic force microscopy of model lipid membranes . Anal. Bioanal. Chem.405 ( 5 ), 1445 – 1461 ( 2013 ).
  • Cho S-J , ChoN-J , AnhJH , JungG-E , AnaribaF . Biophysical applications of scanning ion conductance microscopy (SICM) . Mod. Phys. Lett. B26 ( 05 ), 1130003 ( 2012 ).
  • Chen C-C , ZhouY , BakerLA . Scanning ion conductance microscopy . Annu. Rev. Anal. Chem.5 ( 1 ), 207 – 228 ( 2012 ).
  • Ruenraroengsak P , NovakP , BerhanuDet al. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles . Nanotoxicology6 ( 1 ), 94 – 108 ( 2012 ).
  • Yang X , LiuX , LuHet al. Real-time investigation of acute toxicity of ZnO nanoparticles on human lung epithelia with hopping probe ion conductance microscopy . Chem. Res. Toxicol.25 ( 2 ), 297 – 304 ( 2011 ).
  • Gorelik J , ShevchukA , RamalhoMet al. Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell . Proc. Natl Acad. Sci. USA99 ( 25 ), 16018 – 16023 ( 2002 ).
  • Miragoli M , NovakP , RuenraroengsakPet al. Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia? Nanomedicine 8 ( 5 ), 725 – 737 ( 2012 ).
  • Montenegro L , OttimoS , PuglisiG , CastelliF , SarpietroMG . Idebenone loaded solid lipid nanoparticles interact with biomembrane models: calorimetric evidence . Mol. Pharm.9 ( 9 ), 2534 – 2541 ( 2012 ).
  • Wrobel D , IonovM , GardikisKet al. Interactions of phosphorus-containing dendrimers with liposomes . Biochim. Biophys. Acta1811 ( 3 ), 221 – 226 ( 2011 ).
  • Gupta A , MandalD , AhmadibeniY , ParangK , BothunG . Hydrophobicity drives the cellular uptake of short cationic peptide ligands . Eur. Biophys. J.40 ( 6 ), 727 – 736 ( 2011 ).
  • Alves ID , GoasdoueN , CorreiaIet al. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution . Biochim. Biophys. Acta1780 ( 7–8 ), 948 – 959 ( 2008 ).
  • Walde P , CosentinoK , EngelH , StanoP . Giant vesicles: preparations and applications . ChemBioChem11 ( 7 ), 848 – 865 ( 2010 ).
  • Warschawski DE , ArnoldAA , BeaugrandM , GravelA , Chartrand , MarcotteI . Choosing membrane mimetics for NMR structural studies of transmembrane proteins . Biochim. Biophys. Acta1808 ( 8 ), 1957 – 1974 ( 2011 ).
  • Brisebois P , ArnoldA , ChabreY , RoyR , MarcotteI . Comparative study of the interaction of fullerenol nanoparticles with eukaryotic and bacterial model membranes using solid-state NMR and FTIR spectroscopy . Eur. Biophys. J.41 ( 6 ), 535 – 544 ( 2012 ).
  • Wrobel D , KłysA , IonovMet al. Cationic carbosilane dendrimers–lipid membrane interactions . Chem. Phys. Lipids165 ( 4 ), 401 – 407 ( 2012 ).
  • Smith PES , BrenderJR , DürrUHNet al. Solid-state NMR reveals the hydrophobic-core location of poly(amidoamine) dendrimers in biomembranes . J. Am. Chem. Soc.132 ( 23 ), 8087 – 8097 ( 2010 ).
  • Choi D , MoonJH , KimHet al. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by x-ray and neutron reflection . Soft Matter8 ( 32 ), 8294 – 8297 ( 2012 ).
  • Vandoolaeghe P , RennieAR , CampbellRA , NylanderT . Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage† . Langmuir25 ( 7 ), 4009 – 4020 ( 2008 ).
  • Vandoolaeghe P , RennieAR , CampbellRAet al. Adsorption of cubic liquid crystalline nanoparticles on model membranes . Soft Matter4 ( 11 ), 2267 – 2277 ( 2008 ).
  • Tantra R , KnightA . Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques . Nanotoxicology5 ( 3 ), 381 – 392 ( 2011 ).
  • Al-Jamal WT , Al-JamalKT , TianBet al. Lipid−quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo . ACS Nano2 ( 3 ), 408 – 418 ( 2008 ).
  • Fazlollahi F , SiposA , KimYHet al. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers . Int. J. Nanomedicine6 , 2849 – 2857 ( 2011 ).
  • Ghosh P , YangX , ArvizoRet al. Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles . J. Am. Chem. Soc.132 ( 8 ), 2642 – 2645 ( 2010 ).
  • Kelf TA , SreenivasanVKA , SunJ , KimEJ , GoldysEM , ZvyaginAV . Non-specific cellular uptake of surface-functionalized quantum dots . Nanotechnology21 ( 28 ), 285105 ( 2010 ).
  • Xu AM , AalipourA , Leal-OrtizSet al. Quantification of nanowire penetration into living cells . Nat. Commun.5 , 3613 ( 2014 ).
  • Jin H , HellerDA , SharmaR , StranoMS . Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles . ACS Nano3 ( 1 ), 149 – 158 ( 2009 ).
  • Ciobanasu C , HarmsE , TüNnemannG , CardosoMC , KubitscheckU . Cell-penetrating HIV1 TAT peptides float on model lipid bilayers . Biochemistry48 ( 22 ), 4728 – 4737 ( 2009 ).
  • Ciobanasu C , SiebrasseJP , KubitscheckU . Cell-penetrating HIV1 TAT peptides can generate pores in model membranes . Biophys. J.99 ( 1 ), 153 – 162 ( 2010 ).
  • Mascalchi P , HaanappelE , CarayonK , MazeresS , SalomeL . Probing the influence of the particle in single particle tracking measurements of lipid diffusion . Soft Matter8 ( 16 ), 4462 – 4470 ( 2012 ).
  • Welsher K , YangH . Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles . Nat. Nanotechnol.9 ( 3 ), 198 – 203 ( 2014 ).
  • Han Y , WangX , DaiH , LiS . Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions . ACS Appl. Mater. Interfaces4 ( 9 ), 4616 – 4622 ( 2012 ).
  • Levin CS , KunduJ , JaneskoBG , ScuseriaGE , RaphaelRM , HalasNJ . Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies . J. Phys. Chem. B112 ( 45 ), 14168 – 14175 ( 2008 ).
  • Bard AJ , LiX , ZhanW . Chemically imaging living cells by scanning electrochemical microscopy . Biosens. Bioelectron.22 ( 4 ), 461 – 472 ( 2006 ).
  • Chen Z , XieS , ShenLet al. Investigation of the interactions between silver nanoparticles and HeLa cells by scanning electrochemical microscopy . Analyst133 ( 9 ), 1221 – 1228 ( 2008 ).
  • Zhan D , LiX , NepomnyashchiiAB , Alpuche-AvilesMA , FanF-RF , BardAJ . Characterization of Ag+ toxicity on living fibroblast cells by the ferrocenemethanol and oxygen response with the scanning electrochemical microscope . J. Electroanal. Chem.688 , 61 – 68 ( 2013 ).
  • Prasanth R , GopinathD . Effect of ZnO nanoparticles on nasopharyngeal cancer cells viability and respiration . Appl. Phys. Lett.102 ( 11 ), 113702 ( 2013 ).
  • Verma A , UzunO , HuYet al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles . Nat. Mater.7 ( 7 ), 588 – 595 ( 2008 ).
  • Cebrián V , Martín-SaavedraF , YagüeC , ArrueboM , SantamaríaJ , VilaboaN . Size-dependent transfection efficiency of PEI-coated gold nanoparticles . Acta Biomater.7 ( 10 ), 3645 – 3655 ( 2011 ).
  • Zhu Y , LiW , LiQet al. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles . Carbon47 ( 5 ), 1351 – 1358 ( 2009 ).
  • Luo R , NeuB , VenkatramanSS . Surface functionalization of nanoparticles to control cell interactions and drug release . Small8 ( 16 ), 2585 – 2594 ( 2012 ).
  • Champion JA , MitragotriS . Role of target geometry in phagocytosis . Proc. Natl Acad. Sci. USA103 ( 13 ), 4930 – 4934 ( 2006 ).
  • Gonzalez L , LisonD , Kirsch-VoldersM . Genotoxicity of engineered nanomaterials: a critical review . Nanotoxicology2 ( 4 ), 252 – 273 ( 2008 ).
  • Xia T , KorgeP , WeissJNet al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity . Environ. Health Perspect.112 ( 14 ), 1347 – 1358 ( 2004 ).
  • Foster KA , GaleffiF , GerichFJ , TurnerDA , MullerM . Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration . Prog. Neurobiol.79 ( 3 ), 136 – 171 ( 2006 ).
  • Buettner GR . The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate . Arch. Biochem. Biophys.300 ( 2 ), 535 – 543 ( 1993 ).
  • Pryor WA , StanleyJP . A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation . J. Org. Chem.40 ( 24 ), 3615 – 3617 ( 1975 ).
  • Mahreen R , MohsinM , NasreenZ , SirajM , IshaqM . Significantly increased levels of serum malonaldehyde in Type 2 diabetics with myocardial infarction . Int. J. Diabetes Dev. Ctries30 ( 1 ), 49 – 51 ( 2010 ).
  • Zhao X , WangS , WuY , YouH , LvL . Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo–larval zebrafish . Aquat. Toxicol.136–137 , 49 – 59 ( 2013 ).
  • Xu J , LiZ , XuP , XiaoL , YangZ . Nanosized copper oxide induces apoptosis through oxidative stress in podocytes . Arch. Toxicol.87 ( 6 ), 1067 – 1073 ( 2013 ).
  • Li JJ , HartonoD , OngC-N , BayB-H , YungL-YL . Autophagy and oxidative stress associated with gold nanoparticles . Biomaterials31 ( 23 ), 5996 – 6003 ( 2010 ).
  • Corsi K , ChellatF , YahiaL , FernandesJC . Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan–DNA nanoparticles . Biomaterials24 ( 7 ), 1255 – 1264 ( 2003 ).
  • Vevers WF , JhaAN . Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro . Ecotoxicology17 ( 5 ), 410 – 420 ( 2008 ).
  • Haslam G , WyattD , KitosPA . Estimating the number of viable animal cells in multi-well cultures based on their lactate dehydrogenase activities . Cytotechnology32 ( 1 ), 63 – 75 ( 2000 ).
  • Yao KA , HuangDQ , XuBL , WangN , WangYJ , BiSP . A sensitive electrochemical approach for monitoring the effects of nano-Al2O3 on LDH activity by differential pulse voltammetry . Analyst135 ( 1 ), 116 – 120 ( 2010 ).
  • Yu KO , GrabinskiCM , SchrandAMet al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes . J. Nanopart. Res.11 ( 1 ), 15 – 24 ( 2009 ).
  • Song M-M , SongW-J , BiHet al. Cytotoxicity and cellular uptake of iron nanowires . Biomaterials31 ( 7 ), 1509 – 1517 ( 2010 ).
  • Akagi T , KimH , AkashiM . pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles . J. Biomater. Sci. Polym. Ed.21 ( 3 ), 315 – 328 ( 2010 ).
  • Kim K-J , SungW , SuhBet al. Antifungal activity and mode of action of silver nano-particles on Candida albicans . Biometals22 ( 2 ), 235 – 242 ( 2009 ).
  • Nawaz S , RedheadM , MantovaniG , AlexanderC , BosquillonC , CarboneP . Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure . Soft Matter8 ( 25 ), 6744 – 6754 ( 2012 ).
  • Monticelli L , SalonenE . Biomolecular Simulations – Methods and Protocols.Springer , Germany ( 2013 ).
  • Porasso RD , BennettWF , Oliveira-CostaSD , Lopez CascalesJJ . Study of the benzocaine transfer from aqueous solution to the interior of a biological membrane . J. Phys. Chem. B113 ( 29 ), 9988 – 9994 ( 2009 ).
  • Chang R-W , LeeJ-M . Dynamics of C60 molecules in biological membranes. Computer simulation studies . Bull. Korean Chem. Soc.31 ( 11 ), 3195 – 3200 ( 2010 ).
  • Li L , DavandeH , BedrovD , SmithGD . A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer . J. Phys. Chem. B111 ( 16 ), 4067 – 4072 ( 2007 ).
  • Ingólfsson HI , LopezCA , UusitaloJJet al. The power of coarse graining in biomolecular simulations . Wiley Interdiscip. Rev. Comput. Mol. Sci.4 ( 3 ), 225 – 248 ( 2013 ).
  • Wong-Ekkabut J , BaoukinaS , TriampoW , TangIM , TielemanDP , MonticelliL . Computer simulation study of fullerene translocation through lipid membranes . Nat. Nanotechnol.3 ( 6 ), 363 – 368 ( 2008 ).
  • Lunov O , ZablotskiiV , SyrovetsTet al. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages . Biomaterials32 ( 2 ), 547 – 555 ( 2011 ).
  • Gao H , ShiW , FreundLB . Mechanics of receptor-mediated endocytosis . Proc. Natl. Acad. Sci. USA102 ( 27 ), 9469 – 9474 ( 2005 ).
  • Yi X , ShiX , GaoH . A universal law for cell uptake of one-dimensional nanomaterials . Nano Lett.14 ( 2 ), 1049 – 1055 ( 2014 ).
  • Andreasson-Ochsner M , RomanoG , HakansonMet al. Single cell 3-D platform to study ligand mobility in cell–cell contact . Lab Chip11 ( 17 ), 2876 – 2883 ( 2011 ).
  • Frost R , JönssonGE , ChakarovD , SvedhemS , KasemoB . Graphene oxide and lipid membranes: interactions and nanocomposite structures . Nano Lett.12 ( 7 ), 3356 – 3362 ( 2012 ).
  • Frost R , GrandfilsC , CerdaB , KasemoB , SvedhemS . Structural rearrangements of polymeric insulin-loaded nanoparticles interacting with surface-supported model lipid membranes . J. Biomater. Nanobiotechnol.2 ( 2 ), 181 – 193 ( 2011 ).
  • Akesson A , LundgaardCV , EhrlichN , PomorskiTG , StamouD , CardenasM . Induced dye leakage by PAMAM G6 does not imply dendrimer entry into vesicle lumen . Soft Matter8 ( 34 ), 8972 – 8980 ( 2012 ).
  • Ojea-Jiménez I , García-FernándezL , LorenzoJ , PuntesVF . Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting . ACS Nano6 ( 9 ), 7692 – 7702 ( 2012 ).
  • Hou W-C , MoghadamBY , CorredorC , WesterhoffP , PosnerJD . Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes . Environ. Sci. Technol.46 ( 3 ), 1869 – 1876 ( 2012 ).
  • Hou W-C , MoghadamBY , WesterhoffP , PosnerJD . Distribution of fullerene nanomaterials between water and model biological membranes . Langmuir27 ( 19 ), 11899 – 11905 ( 2011 ).
  • Carney RP , AstierY , CarneyTM , VoïtchovskyK , Jacob SilvaPH , StellacciF . Electrical method to quantify nanoparticle interaction with lipid bilayers . ACS Nano7 ( 2 ), 932 – 942 ( 2012 ).
  • Zupanc J , DrobneD , DraslerBet al. Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes . Carbon50 ( 3 ), 1170 – 1178 ( 2012 ).
  • Parimi S , BarnesTJ , CallenDF , PrestidgeCA . Mechanistic insight into cell growth, internalization, and cytotoxicity of PAMAM dendrimers . Biomacromolecules11 ( 2 ), 382 – 389 ( 2009 ).
  • Zhang S , NelsonA , BealesPA . Freezing or wrapping: the role of particle size in the mechanism of nanoparticle–biomembrane interaction . Langmuir28 ( 35 ), 12831 – 12837 ( 2012 ).
  • Cho EC , LiuY , XiaY . A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures . Angew. Chem. Int. Ed.49 ( 11 ), 1976 – 1980 ( 2010 ).
  • Ke PC , LammMH . A biophysical perspective of understanding nanoparticles at large . Phys. Chem. Chem. Phys.13 ( 16 ), 7273 – 7283 ( 2011 ).
  • Barauskas J , CervinC , JankunecMet al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes . Int. J. Pharm.391 ( 1–2 ), 284 – 291 ( 2010 ).
  • kesson A , LindTK , BarkerR , HughesA , CárdenasM . Unraveling dendrimer translocation across cell membrane mimics . Langmuir28 ( 36 ), 13025 – 13033 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.