5,563
Views
3
CrossRef citations to date
0
Altmetric
Review

Gold Nanoparticles for Photoacoustic Imaging

&
Pages 299-320 | Published online: 20 Jan 2015

References

  • Bell AG . Upon the production of sound by radiant energy . Am. J. Sci.20 , 305 – 324 ( 1880 ).
  • Xu M , WangLV . Photoacoustic imaging in biomedicine . Rev. Sci. Instrum.77 ( 4 ), 041101 ( 2006 ).
  • Harrison T , RanasinghesagaraCJ , LuH , MathewsonK , WalshA , ZempRJ . Combined photoacoustic and ultrasound biomicroscopy . Opt. Express17 , 22041 – 22046 ( 2009 ).
  • Niederhauser JJ , JaegerM , LemorR , WeberP , FrenzM . Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo . IEEE Trans. Med. Imaging24 ( 4 ), 436 – 440 ( 2005 ).
  • Wang LV . Multiscale photoacoustic microscopy and computed tomography . Nat. Photonics3 ( 9 ), 503 – 509 ( 2009 ).
  • Wang LV , HuS . Photoacoustic tomography: in vivo imaging from organelles to organs . Science335 ( 6075 ), 1458 – 1462 ( 2012 ).
  • Jain PK , LeeKS , El-SayedIH , El-SayedMA . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine . J. Phys. Chem. B110 ( 14 ), 7238 – 7248 ( 2006 ).
  • Weissleder R . A clearer vision for in vivo imaging . Nat. Biotechnol.19 , 316 – 317 ( 2001 ).
  • Rouleau L , BertiR , NgVWKet al. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice . Contrast Media Mol. Imaging8 ( 1 ), 27 – 39 ( 2013 ).
  • Smith AM , ManciniMC , NieS . Bioimaging: second window for in vivo imaging . Nat. Nanotechnol.4 ( 11 ), 710 – 711 ( 2009 ).
  • Sordillo L , PuY , PratavieiraS , BudanskyY , AlfanoR . Deep optical imaging of tissue using the second and third near-infrared spectral windows . J. Biomed. Opt.19 ( 5 ), 56004 – 56004 ( 2014 ).
  • Shimizu T , TeranishiT , HasegawaS , MiyakeM . Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state . J. Phys. Chem. B107 ( 12 ), 2719 – 2724 ( 2003 ).
  • Ye X , GaoY , ChenJ , ReifsnyderDC , ZhengC , MurrayCB . Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures . Nano Lett.13 ( 5 ), 2163 – 2171 ( 2013 ).
  • Oldenburg SJ , AverittRD , WestcottSL , HalasNJ . Nanoengineering of optical resonances . Chem. Phys. Lett.288 ( 2–4 ), 243 – 247 ( 1998 ).
  • Ah CS , YunYJ , ParkHJ , KimW–J , HaDH , YunWS . Size-controlled synthesis of machinable single crystalline gold nanoplates . Chem. Mater.17 ( 22 ), 5558 – 5561 ( 2005 ).
  • Wang Y , LiuY , LuehmannHet al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of au nanocages by positron emission tomography imaging . ACS Nano6 ( 7 ), 5880 – 5888 ( 2012 ).
  • Nehl CL , LiaoH , HafnerJH . Optical properties of star-shaped gold nanoparticles . Nano Lett.6 ( 4 ), 683 – 688 ( 2006 ).
  • Wang S , HuangP , NieLet al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars . Adv. Mater.25 ( 22 ), 3055 – 3061 ( 2013 ).
  • Personick ML , LangilleMR , ZhangJ , HarrisN , SchatzGC , MirkinCA . Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra . J. Am. Chem. Soc.133 ( 16 ), 6170 – 6173 ( 2011 ).
  • Emelianov SY , AglyamovSR , KarpioukABet al. 1E-5 synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging (invited) . Presented at : IEEE Ultrasonics Symposium 2006.Vancouver, BC, Canada , 3–6 October 2006 .
  • Vo-Dinh T . Biomedical Photonics Handbook.CRC Press , FL, USA ( 2010 ).
  • Oraevsky AA , JacquesSL , TittelFK . Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress . Appl. Opt.36 ( 1 ), 402 – 415 ( 1997 ).
  • Oraevsky AA , EsenalievRO , JacquesSL , ThomsenSL , TittelFK . Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers . Proc. SPIE2389 , 198 – 208 ( 1995 ).
  • Kim C , ErpeldingTN , JankovicL , PashleyMD , WangLV . Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system . Biomed. Opt. Express1 ( 1 ), 278 – 284 ( 2010 ).
  • Esenaliev RO , KarabutovAA , OraevskyAA . Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors . IEEE J. Sel. Top. Quant.5 ( 4 ), 981 – 988 ( 1999 ).
  • Ku G , WangLV . Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent . Opt. Lett.30 ( 5 ), 507 – 509 ( 2005 ).
  • American National Standards Institute , Laser Institute of America . American National Standard for the Safe Use of Lasers.American National Standards Institute , Washington, DC, USA ( 2000 ).
  • Zhang HF , MaslovK , StoicaG , WangLV . Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging . Nat. Biotechnol.24 ( 7 ), 848 – 851 ( 2006 ).
  • Maslov K , ZhangHF , HuS , WangLV . Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries . Opt. Lett.33 ( 9 ), 929 – 931 ( 2008 ).
  • Mallidi S , AglyamovS , KarpioukA , ParkS , EmelianovS . Functional and morphological ultrasonic biomicroscopy for tissue engineers . Proc. SPIE6147 , Y1 – Y7 ( 2006 ).
  • Manohar S , VaartjesSE , Van HespenJCet al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics . Opt. Express15 ( 19 ), 12277 – 12285 ( 2007 ).
  • Kelly KL , CoronadoE , ZhaoLL , SchatzGC . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment . J. Phys. Chem. B107 ( 3 ), 668 – 677 ( 2003 ).
  • Mayer KM , HafnerJH . Localized surface plasmon resonance sensors . Chem. Rev.111 ( 6 ), 3828 – 3857 ( 2011 ).
  • Cho EC , KimC , ZhouFet al. Measuring the optical absorption cross sections of Au−Ag nanocages and au nanorods by photoacoustic imaging . J. Phys. Chem. C113 ( 21 ), 9023 – 9028 ( 2009 ).
  • Myroshnychenko V , Rodríguez-FernándezJ , Pastoriza-SantosIet al. Modelling the optical response of gold nanoparticles . Chem. Soc. Rev.37 ( 9 ), 1792 – 1805 ( 2008 ).
  • Grzelczak M , Pérez-JusteJ , MulvaneyP , Liz-MarzánLM . Shape control in gold nanoparticle synthesis . Chem. Soc. Rev.37 ( 9 ), 1783 – 1791 ( 2008 ).
  • Xia Y , XiongY , LimB , SkrabalakSE . Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?Angew. Chem. Int. Ed.48 ( 1 ), 60 – 103 ( 2009 ).
  • Link S , El-SayedMA . Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods . J. Phys. Chem. B103 ( 40 ), 8410 – 8426 ( 1999 ).
  • Xia Y , LiW , CobleyCMet al. Gold nanocages: from synthesis to theranostic applications . Acc. Chem. Res.44 ( 10 ), 914 – 924 ( 2011 ).
  • Gao B , RozinMJ , TaoAR . Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles . Nanoscale5 ( 13 ), 5677 – 5691 ( 2013 ).
  • Lin J , WangS , HuangPet al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy . ACS Nano7 ( 6 ), 5320 – 5329 ( 2013 ).
  • He J , HuangX , LiY-Cet al. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents . J. Am. Chem. Soc.135 ( 21 ), 7974 – 7984 ( 2013 ).
  • Huang P , LinJ , LiWet al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy . Angew. Chem. Int. Ed.125 ( 52 ), 14208 – 14214 ( 2013 ).
  • Nikoobakht B , El-SayedMA . Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method . Chem. Mater.15 ( 10 ), 1957 – 1962 ( 2003 ).
  • Zhu J , YongK-T , RoyIet al. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells . Nanotechnology21 ( 28 ), 285106 ( 2010 ).
  • Huang X , NeretinaS , El‐SayedMA . Gold nanorods: from synthesis and properties to biological and biomedical applications . Adv. Mater.21 ( 48 ), 4880 – 4910 ( 2009 ).
  • Lee K-S , El-SayedMA . Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index . J. Phys. Chem. B109 ( 43 ), 20331 – 20338 ( 2005 ).
  • Wiesner J , WokaunA . Anisometric gold colloids. Preparation, characterization, and optical properties . Chem. Phys. Lett.157 ( 6 ), 569 – 575 ( 1989 ).
  • Huang X , El-SayedIH , QianW , El-SayedMA . Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods . J. Am. Chem. Soc.128 ( 6 ), 2115 – 2120 ( 2006 ).
  • Jokerst JV , ColeAJ , Van De SompelD , GambhirSS . Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice . ACS Nano6 ( 11 ), 10366 – 10377 ( 2012 ).
  • Orendorff CJ , MurphyCJ . Quantitation of metal content in the silver-assisted growth of gold nanorods . J. Phys. Chem. B110 ( 9 ), 3990 – 3994 ( 2006 ).
  • Wang Y , XieX , WangXet al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain . Nano Lett.4 ( 9 ), 1689 – 1692 ( 2004 ).
  • Xiang L , XingD , GuH , YangD , ZengL , YangS . Gold nanoshell-based photoacoustic imaging application in biomedicine . Presented at : 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials.Hangzhou, China , 16–18 October 2006 .
  • Averitt R , SarkarD , HalasN . Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth . Phys. Rev. Lett.78 ( 22 ), 4217 ( 1997 ).
  • Westcott SL , OldenburgSJ , LeeTR , HalasN . Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions . Chem. Phys. Lett.300 ( 5 ), 651 – 655 ( 1999 ).
  • Westcott SL , OldenburgSJ , LeeTR , HalasNJ . Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces . Langmuir14 ( 19 ), 5396 – 5401 ( 1998 ).
  • Oldenburg SJ , JacksonJB , WestcottSL , HalasN . Infrared extinction properties of gold nanoshells . Appl. Phys. Lett.75 ( 19 ), 2897 – 2899 ( 1999 ).
  • Lin A , HirschL , LeeM-Het al. Nanoshell-enabled photonics-based imaging and therapy of cancer . Technol. Cancer Res. Treat.3 ( 1 ), 33 – 40 ( 2004 ).
  • Sun Y , MayersBT , XiaY . Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors . Nano Lett.2 ( 5 ), 481 – 485 ( 2002 ).
  • Cole JR , MirinNA , KnightMW , GoodrichGP , HalasNJ . Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications . J. Phys. Chem. C113 ( 28 ), 12090 – 12094 ( 2009 ).
  • Millstone JE , HurstSJ , MétrauxGS , CutlerJI , MirkinCA . Colloidal gold and silver triangular nanoprisms . Small5 ( 6 ), 646 – 664 ( 2009 ).
  • Malikova N , Pastoriza-SantosI , SchierhornM , KotovNA , Liz-MarzánLM . Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions . Langmuir18 ( 9 ), 3694 – 3697 ( 2002 ).
  • Millstone JE , ParkS , ShufordKL , QinL , SchatzGC , MirkinCA . Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms . J. Am. Chem. Soc.127 ( 15 ), 5312 – 5313 ( 2005 ).
  • Millstone JE , MétrauxGS , MirkinCA . Controlling the edge length of gold nanoprisms via a seed‐mediated approach . Adv. Funct. Mater.16 ( 9 ), 1209 – 1214 ( 2006 ).
  • Skrabalak SE , ChenJ , SunYet al. Gold nanocages: synthesis, properties, and applications . Acc. Chem. Res.41 ( 12 ), 1587 – 1595 ( 2008 ).
  • Yang X , SkrabalakSE , LiZ-Y , XiaY , WangLV . Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent . Nano Lett.7 ( 12 ), 3798 – 3802 ( 2007 ).
  • Mahmoud M , El-SayedM . Metallic double shell hollow nanocages: the challenges of their synthetic techniques . Langmuir28 ( 9 ), 4051 – 4059 ( 2012 ).
  • Chen J , SaekiF , WileyBJet al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents . Nano Lett.5 ( 3 ), 473 – 477 ( 2005 ).
  • Yavuz MS , ChengY , ChenJet al. Gold nanocages covered by smart polymers for controlled release with near-infrared light . Nat. Mater.8 ( 12 ), 935 – 939 ( 2009 ).
  • Yuan H , KhouryCG , HwangH , WilsonCM , GrantGA , Vo-DinhT . Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging . Nanotechnology23 ( 7 ), 075102 ( 2012 ).
  • Guerrero-Martínez A , BarbosaS , Pastoriza-SantosI , Liz-MarzánLM . Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles . Curr. Opin. Colloid Interface Sci.16 ( 2 ), 118 – 127 ( 2011 ).
  • Kumar PS , Pastoriza-SantosI , Rodriguez-GonzalezB , De AbajoFJG , Liz-MarzanLM . High-yield synthesis and optical response of gold nanostars . Nanotechnology19 ( 1 ), 015606 ( 2008 ).
  • Hao E , BaileyRC , SchatzGC , HuppJT , LiS . Synthesis and optical properties of ‘branched’ gold nanocrystals . Nano Lett.4 ( 2 ), 327 – 330 ( 2004 ).
  • Khoury CG , Vo-DinhT . Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization . J. Phys. Chem. C112 ( 48 ), 18849 – 18859 ( 2008 ).
  • Kim C , SongH-M , CaiX , YaoJ , WeiA , WangLV . In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars . J. Mater. Chem.21 ( 9 ), 2841 – 2844 ( 2011 ).
  • Kim G , HuangS-W , DayKCet al. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging . J. Biomed. Opt.12 ( 4 ), 044020 ( 2007 ).
  • Song KH , MargenthalerJA , WangLV , SteinEW . Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model . J. Biomed. Opt.13 ( 5 ), 054033 ( 2008 ).
  • Li M-L , OhJ-T , XieXet al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography . Proc. IEEE96 ( 3 ), 481 – 489 ( 2008 ).
  • Bhattacharyya S , WangS , ReineckeD , KiserJrW , KrugerRA , DegradoTR . Synthesis and evaluation of near-infrared (NIR) dye–herceptin conjugates as photoacoustic computed tomography (PCT) probes for HER2 expression in breast cancer . Bioconjug. Chem.19 ( 6 ), 1186 – 1193 ( 2008 ).
  • De La Zerda A , ZavaletaC , KerenSet al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice . Nat. Nanotechnol.3 ( 9 ), 557 – 562 ( 2008 ).
  • Homan KA , SouzaM , TrubyRet al. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging . ACS Nano6 ( 1 ), 641 – 650 ( 2012 ).
  • Kim J-W , GalanzhaEI , ShashkovEV , MoonH-M , ZharovVP . Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents . Nat. Nanotechnol.4 ( 10 ), 688 – 694 ( 2009 ).
  • Zerda ADL , LiuZ , BodapatiSet al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice . Nano Lett.10 ( 6 ), 2168 – 2172 ( 2010 ).
  • Jin Y , JiaC , HuangS-W , O’donnellM , GaoX . Multifunctional nanoparticles as coupled contrast agents . Nat. Commun.1 , 41 ( 2010 ).
  • Galanzha EI , KokoskaMS , ShashkovEV , KimJW , TuchinVV , ZharovVP . In vivo fiber‐based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles . J. Biophotonics2 ( 8–9 ), 528 – 539 ( 2009 ).
  • Liu X , AtwaterM , WangJ , HuoQ . Extinction coefficient of gold nanoparticles with different sizes and different capping ligands . Colloids Surf. B Biointerfaces58 ( 1 ), 3 – 7 ( 2007 ).
  • Melancon MP , LuW , YangZet al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy . Mol. Cancer Ther.7 ( 6 ), 1730 – 1739 ( 2008 ).
  • Oregon Medical Laser Center . Optical absorption of indocyanine green . http://omlc.org/spectra/icg/index.html
  • Orgeon Medical Laser Center . Optical absorption of methylene blue . http://omlc.org/spectra/mb/index.html
  • LI-COR . IRDye® 800CW NHS ester: optical properties and structure . www.licor.com/clinical_translation/irdye_800CW_NHS
  • Life Technologies . The Alexa Fluor dye series . www.lifetechnologies.com/cn/zh/home/references
  • Schöppler F , MannC , HainTCet al. Molar extinction coefficient of single-wall carbon nanotubes . J. Phys. Chem. C115 ( 30 ), 14682 – 14686 ( 2011 )
  • Laufer J , ZhangE , BeardP . Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging . IEEE J. Sel. Top. Quant.16 ( 3 ), 600 – 607 ( 2010 ).
  • Zhang Q , IwakumaN , SharmaPet al. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography . Nanotechnology20 ( 39 ), 395102 ( 2009 ).
  • Kim C , ChoEC , ChenJet al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages . ACS Nano4 ( 8 ), 4559 – 4564 ( 2010 ).
  • Zhang YS , WangY , WangLet al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy . Theranostics3 ( 8 ), 532 ( 2013 ).
  • Kim S , ChenY-S , LukeGP , EmelianovSY . In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery . Biomed. Opt. Express2 ( 9 ), 2540 – 2550 ( 2011 ).
  • Bao C , BeziereN , Del PinoPet al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers . Small9 ( 1 ), 68 – 74 ( 2013 ).
  • Bayer CL , ChenY-S , KimS , MallidiS , SokolovK , EmelianovS . Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods . Biomed. Opt. Express2 ( 7 ), 1828 – 1835 ( 2011 ).
  • Bayer CL , ChenY-S , KimS , MallidiS , SokolovK , EmelianovS . Molecular diagnosis of cancer using multiplex photoacoustic imaging with targeted nanorods . Presented at : IEEE Ultrasonics Symposium 2010.San Diego, CA, USA , 11–14 October 2010 .
  • Li P-C , WeiC-W , LiaoC-Ket al. Photoacoustic imaging of multiple targets using gold nanorods . IEEE Trans. Ultrason. Ferr.54 ( 8 ), 1642 – 1647 ( 2007 ).
  • Nie L , WangS , WangXet al. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars . Small10 ( 8 ), 1585 – 1593 ( 2013 ).
  • Agarwal A , HuangSW , O’DonnellMet al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging . J. Appl. Phys.102 ( 6 ), 064701 ( 2007 ).
  • Cheng K , KothapalliS-R , LiuHet al. Construction and validation of nano gold tripods for molecular imaging of living subjects . J. Am. Chem. Soc.136 ( 9 ), 3560 – 3571 ( 2014 ).
  • Thomas T , DaleP , WeightR , AtasoyU , MageeJ , ViatorJ . Photoacoustic detection of breast cancer cells in human blood . Proc. SPIE4856 , 685609 ( 2008 ).
  • Viator JA , GuptaS , GoldschmidtBSet al. Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance . J. Biomed. Nanotechnol.6 ( 2 ), 187 – 191 ( 2010 ).
  • McCormack DR , BhattacharyyaK , KannanR , KattiK , ViatorJA . Enhanced photoacoustic detection of melanoma cells using gold nanoparticles . Lasers Surg. Med.43 ( 4 ), 333 – 338 ( 2011 ).
  • Li PC , WangCR , ShiehDBet al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods . Opt. Express16 ( 23 ), 18605 – 18615 ( 2008 ).
  • Hu X , WeiCW , XiaJ , PelivanovI , O’DonnellM , GaoX . Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto‐optical coupled nanoparticles . Small9 ( 12 ), 2046 – 2052 ( 2013 ).
  • Truby RL , EmelianovSY , HomanKA . Ligand-mediated self-assembly of hybrid plasmonic and superparamagnetic nanostructures . Langmuir29 ( 8 ), 2465 – 2470 ( 2013 ).
  • Chen L-C , WeiC-W , SourisJSet al. Enhanced photoacoustic stability of gold nanorods by silica matrix confinement . J. Biomed. Opt.15 ( 1 ), 016010 ( 2010 ).
  • Jokerst JV , ThangarajM , KempenPJ , SinclairR , GambhirSS . Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods . ACS Nano6 ( 7 ), 5920 – 5930 ( 2012 ).
  • Song KH , KimC , MaslovK , WangLV . Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes . Eur. J. Radiol.70 ( 2 ), 227 – 231 ( 2009 ).
  • Song KH , KimC , CobleyCM , XiaY , WangLV . Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model . Nano Lett.9 ( 1 ), 183 – 188 ( 2008 ).
  • Galanzha EI , ShashkovEV , TuchinVV , ZharovVP . In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label‐free detection and multicolor nanoparticle probes . Cytometry A73 ( 10 ), 884 – 894 ( 2008 ).
  • Galanzha EI , TuchinVV , ZharovVP . Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening . World J. Gastroenterol.13 ( 2 ), 192 – 218 ( 2007 ).
  • Wang B , JoshiP , SapozhnikovaVet al. Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles . Proc. SPIE7564 , 75640A ( 2010 ).
  • Wang B , YantsenE , LarsonTet al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques . Nano Lett.9 ( 6 ), 2212 – 2217 ( 2008 ).
  • Kim K , HuangS-W , AshkenaziSet al. Photoacoustic imaging of early inflammatory response using gold nanorods . Appl. Phys. Lett.90 ( 22 ), 223901 ( 2007 ).
  • O’Donnell M , McveighER , StraussHWet al. Multimodality cardiovascular molecular imaging technology . J. Nucl. Med.51 ( Suppl. 1 ), 38S – 50S ( 2010 ).
  • Ha S , CarsonA , AgarwalA , KotovNA , KimK . Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods . Biomed. Opt. Express2 ( 3 ), 645 – 657 ( 2011 ).
  • Yeager D , KarpioukA , WangBet al. Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood . J. Biomed. Opt.17 ( 10 ), 106016 – 106016 ( 2012 ).
  • Lu W , HuangQ , KuGet al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres . Biomaterials31 ( 9 ), 2617 – 2626 ( 2010 ).
  • Kircher MF , De La ZerdaA , JokerstJVet al. A brain tumor molecular imaging strategy using a new triple-modality MRI–photoacoustic–Raman nanoparticle . Nat. Med.18 ( 5 ), 829 – 834 ( 2012 ).
  • Cui H , YangX . In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system . Med. Phys.37 ( 9 ), 4777 – 4781 ( 2010 ).
  • Taruttis A , HerzogE , RazanskyD , NtziachristosV . Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography . Opt. Express18 ( 19 ), 19592 – 19602 ( 2010 ).
  • Razansky D , BaetenJ , NtziachristosV . Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT) . Med. Phys.36 ( 3 ), 939 – 945 ( 2009 ).
  • Malam Y , LoizidouM , SeifalianAM . Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer . Trends Pharmacol. Sci.30 ( 11 ), 592 – 599 ( 2009 ).
  • Paciotti GF , MyerL , WeinreichDet al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery . Drug Deliv.11 ( 3 ), 169 – 183 ( 2004 ).
  • Cheng Y , C. SamiaA , MeyersJD , PanagopoulosI , FeiB , BurdaC . Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer . J. Am. Chem. Soc.130 ( 32 ), 10643 – 10647 ( 2008 ).
  • You J , ShaoR , WeiX , GuptaS , LiC . Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity . Small6 ( 9 ), 1022 – 1031 ( 2010 ).
  • Campardelli R , Della PortaG , GomezL , IrustaS , ReverchonE , SantamariaJ . Au–PLA nanocomposites for photothermally controlled drug delivery . J. Mater. Chem. B2 ( 4 ), 409 – 417 ( 2014 ).
  • Mallidi S , LukeGP , EmelianovS . Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance . Trends Biotechnol.29 ( 5 ), 213 – 221 ( 2011 ).
  • Shah J , MaL , SokolovKet al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy . J. Biomed. Opt.13 ( 3 ), 034024 ( 2008 ).
  • Lu W , MelanconMP , XiongCet al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma . Cancer Res.71 ( 19 ), 6116 – 6121 ( 2011 ).
  • Yeager D , ChenY-S , LitovskyS , EmelianovS . Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study . Theranostics4 ( 1 ), 36 – 46 ( 2014 ).
  • Chang S-S , ShihC-W , ChenC-D , LaiW-C , WangCC . The shape transition of gold nanorods . Langmuir15 ( 3 ), 701 – 709 ( 1999 ).
  • Chen Y-S , FreyW , KimSet al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy . Opt. Express18 ( 9 ), 8867 – 8878 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.