402
Views
0
CrossRef citations to date
0
Altmetric
Review

Dendrimer–Nanoparticle Conjugates in Nanomedicine

, , , , , & show all
Pages 977-992 | Published online: 13 Apr 2015

References

  • Medintz IL , UyedaHT , GoldmanER , MattoussiH . Quantum dot bioconjugates for imaging, labelling and sensing . Nat. Mater.4 , 435 – 446 ( 2005 ).
  • Haase M , SchaeferH . Up-converting nanoparticles . Angew. Chem. Int. Ed.50 , 5808 – 5829 ( 2011 ).
  • Jutaek N , NayounW , JiwonB , HoJet al. Surface engineering of inorganic nanoparticles for imaging and therapy . Adv. Drug Deliv. Rev.65 , 622 – 648 ( 2013 ).
  • Kim C-K , GhoshP , RotelloMV . Multimodal drug delivery using gold nanoparticles . Nanoscale1 , 61 – 67 ( 2009 ).
  • Lee JH , HuhYM , JunYWet al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery . Nat. Med.13 , 95 – 99 ( 2007 ).
  • Thomas CR , FerrisDP , LeeJHet al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles . J. Am. Chem. Soc.132 , 10623 – 10625 ( 2010 ).
  • Lee H , SunE , HamD , WeisslederR . Chip-NMR biosensor for detection and molecular analysis of cells . Nat. Med.14 , 869 – 874 ( 2008 ).
  • Freeman R , WillnerI . Optical molecular sensing with semiconductor quantum dots (QDs) . Chem. Soc. Rev.41 , 4067 – 4085 ( 2012 ).
  • Liu Q , YangT , FengW , LiF . Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo . J. Am. Chem. Soc.134 , 5390 – 5397 ( 2012 ).
  • Jain PK , HuangX , El-SayedIH , El-SayedMA . Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine . Acc. Chem. Res.41 , 1578 – 1586 ( 2008 ).
  • Chen L , RazaviFS , MuminA , GuoX , ShamTK , ZhangJ . Multifunctional nanoparticles for rapid bacterial capture, detection and decontamination . RSC Adv.3 , 2390 – 2397 ( 2013 ).
  • Louie A . Multimodality imaging probes: design and challenges . Chem. Rev.110 ( 5 ), 3146 – 3195 ( 2010 ).
  • Nazemi A , GilliesER . Dendritic surface functionalization of nanomaterials: controlling properties and functions for biomedical applications . Braz. J. Pharm. Sci.49 , 15 – 32 ( 2013 ).
  • Gillich T , AcikgözC , IsaL , Dieter SchluterA , SpencerND , TextorM . PEF-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation . ACS Nano7 ( 1 ), 316 – 329 ( 2013 ).
  • Rolland O , TurrinCO , CaminadeAMet al. Dendrimers: polyvalency in action . New J. Chem.33 , 1809 – 1826 ( 2009 ).
  • Gupta AK , GuptaM . Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications . Biomaterials26 ( 18 ), 3995 – 4021 ( 2005 ).
  • Weissleder R , StarkDD , EngelstadBLet al. Superparamagnetic iron oxide: pharmacokinetics and toxicity . Am. J. Roentgenol.152 , 167 – 173 ( 1989 ).
  • Huh Y-M , JunY , SongH-Tet al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals . J. Am. Chem. Soc.127 ( 35 ), 12387 – 12391 ( 2005 ).
  • Barnett BP , ArepallyA , KarmarkarP Vet al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells . Nat. Med.13 ( 8 ), 986 – 991 ( 2007 ).
  • Tassa C , ShawSY , WeisslederR . Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy . Acc. Chem. Res.44 ( 10 ), 842 – 852 ( 2011 ).
  • Bulte JW , DouglasT , WitwerBet al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells . Nat. Biotechnol.19 ( 12 ), 1141 – 1147 ( 2001 ).
  • Berry CC , CurtisASG . Functionalisation of magnetic nanoparticles for applications in biomedicine . J. Phys. D. Appl. Phys.36 , R198 – R206 ( 2003 ).
  • Ghobril C , LamannaG , Kueny-StotzM , GarofaloA , BilloteyC , Felder-FleschD . Dendrimers in nuclear medical imaging . New J. Chem.36 ( 2 ), 310 – 323 ( 2012 ).
  • Duanmu C , SahaI , ZhengY , GoodsonBM , GaoY . Dendron-functionalized superparamagnetic nanoparticles with switchable solubility in organic and aqueous media: matrices for homogeneous catalysis and potential MRI contrast agents . Chem. Mater.18 ( 25 ), 5973 – 5981 ( 2006 ).
  • Wu X , HeX , ZhongLet al. Water-soluble dendritic-linear triblock copolymer-modified magnetic nanoparticles: preparation, characterization and drug release properties . J. Mater. Chem.21 ( 35 ), 13611 ( 2011 ).
  • Rouhollah K , PelinM , SerapY , GozdeU , UfukG . Doxorubicin loading, release, and stability of polyamidoamine dendrimer-coated magnetic nanoparticles . J. Pharm. Sci.102 ( 6 ), 1825 – 1835 ( 2013 ).
  • Basly B , Felder-FleschD , PerriatP , PourroyG , Begin-ColinS . Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications . Contrast Media Mol. Imaging6 , 132 – 138 ( 2011 ).
  • Walter A , BilloteyC , GarofaloAet al. . Mastering shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia . Chem. Mater. doi:10.1021/cm5019025 ( 2014 ).
  • Wang L , NeohKG , KangET , ShuterB , WangS-C . Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: an in vitro assessment . Adv. Funct. Mater.19 ( 16 ), 2615 – 2622 ( 2009 ).
  • Arsalani N , FattahiH , LaurentS , BurteaC , Vander ElstL , MullerRN . Polyglycerol-grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging . Contrast Media Mol. Imaging7 ( 2 ), 185 – 194 ( 2012 ).
  • Saha I , ChaffeeKE , DuanmuCet al. pH-Sensitive MR responses induced by dendron-functionalized SPIONs . J. Phys. Chem. C. Nanomater Interfaces117 ( 4 ), 1893 – 1903 ( 2013 ).
  • Lamanna G , Kueny-StotzM , Mamlouk-ChaouachiHet al. Dendronized iron oxide nanoparticles for multimodal imaging . Biomaterials32 ( 33 ), 8562 – 8573 ( 2011 ).
  • Kueny-Stotz M , Mamlouk-ChaouachiH , Felder-FleschD . Synthesis of Patent Blue derivatized hydrophilic dendrons dedicated to sentinel node detection in breast cancer . Tetrahedron Lett.52 ( 22 ), 2906 – 2909 ( 2011 ).
  • Ghobril C , PopaG , ParatAet al. A bisphosphonate tweezers and clickable PEGylated PAMAM dendrons for the preparation of functional iron oxide nanoparticles displaying renal and hepatobiliary elimination . Chem. Commun. (Camb.)49 ( 80 ), 9158 – 9160 ( 2013 ).
  • Daou TJ , PourroyG , GrenecheJM , BertinA , Felder-FleschD , Begin-ColinS . Water soluble dendronized iron oxide nanoparticles . Dalt. Trans. ( 23 ), 4442 – 4449 ( 2009 ).
  • Basly B , PopaG , FleutotSet al. Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents . Dalt. Trans.42 ( 6 ), 2146 – 2157 ( 2013 ).
  • Chang Y , LiuN , ChenLet al. Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery . J. Mater. Chem.22 ( 19 ), 9594 ( 2012 ).
  • Wang SH , ShiX , Van AntwerpMet al. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells . Adv. Funct. Mater.17 , 3043 – 3050 ( 2007 ).
  • Chandra S , MehtaS , NigamS , BahadurD . Dendritic magnetite nanocarriers for drug delivery applications . New J. Chem.34 ( 4 ), 648 ( 2010 ).
  • Gao F , PanB-F , ZhengW-M , AoL-M , GuH-C . Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles . J. Magn. Magn. Mater.293 ( 1 ), 48 – 54 ( 2005 ).
  • Liu W-M , XueY-N , PengN , HeW-T , ZhuoR-X , HuangS-W . Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novel strategy for magnetofection . J. Mater. Chem.21 ( 35 ), 13306 ( 2011 ).
  • Pan B , CuiD , ShengYet al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system . Cancer Res.67 ( 17 ), 8156 – 8163 ( 2007 ).
  • Yeh Y-C , CreranB , RotelloVM . Gold nanoparticles: preparation, properties, and applications in bionanotechnology . Nanoscale4 ( 6 ), 1871 – 1880 ( 2012 ).
  • Katz E , WillnerI . Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications . Angew. Chem. Int. Ed.43 ( 45 ), 6042 – 6108 ( 2004 ).
  • Shenhar R , RotelloVM . Nanoparticles: scaffolds and building blocks . Acc. Chem. Res.36 ( 7 ), 549 – 561 ( 2003 ).
  • Eck W , CraigG , SigdelAet al. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue . ACS Nano2 ( 11 ), 2263 – 2272 ( 2008 ).
  • Storhoff JJ , MirkinCA . Programmed materials synthesis with DNA . Chem. Rev.99 ( 7 ), 1849 – 1862 ( 1999 ).
  • Popovtzer R , AgrawalA , KotovNAet al. Targeted gold nanoparticles enable molecular CT imaging of cancer . Nano Lett.8 ( 12 ), 4593 – 4596 ( 2008 ).
  • Prencipe G , TabakmanSM , WelsherKet al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation . J. Am. Chem. Soc.131 ( 13 ), 4783 – 4787 ( 2009 ).
  • Burda C , ChenX , NarayananR , El-SayedMA . Chemistry and properties of nanocrystals of different shapes . Chem. Rev.105 ( 4 ), 1025 – 1102 ( 2005 ).
  • Groehn F , BauerBJ , AkpaluYA , JacksonCL , AmisEJ . Dendrimer templates for the formation of gold nanoclusters . Macromolecules33 ( 16 ), 6042 – 6050 ( 2000 ).
  • Scott RWJ , WilsonOM , CrooksRM . Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles . J. Phys. Chem. B109 ( 2 ), 692 – 704 ( 2005 ).
  • Bielinska A , EichmanJD , LeeI , BakerJR , Jr , BaloghL . Imaging {Au0-PAMAM} gold-dendrimer nanocomposites in cells . J. Nanopart. Res.4 ( 5 ), 395 – 403 ( 2002 ).
  • Shi X , WangS , SunH , BakerJRJr. Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles . Soft Matter3 ( 1 ), 71 – 74 ( 2007 ).
  • Shi X , WangS , MeshinchiSet al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging . Small3 ( 7 ), 1245 – 1252 ( 2007 ).
  • Wang H , ZhengL , PengCet al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles . Biomaterials32 ( 11 ), 2979 – 2988 ( 2011 ).
  • Wang H , ZhengL , GuoRet al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging . Nanoscale Res. Lett.7 ( 1 ), 190 – 198 ( 2012 ).
  • Wang H , ZhengL , PengC , ShenM , ShiX , ZhangG . Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma . Biomaterials34 ( 2 ), 470 – 480 ( 2013 ).
  • Peng C , ZhengL , ChenQet al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography . Biomaterials33 ( 4 ), 1107 – 1119 ( 2012 ).
  • Liu H , WangH , XuYet al. Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications . Nanoscale6 ( 9 ), 4521 – 4526 ( 2014 ).
  • Shukla R , HillE , ShiXet al. Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles . Soft Matter4 ( 11 ), 2160 – 2163 ( 2008 ).
  • Liu H , WangH , XuYet al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma . ACS Appl. Mater. Interfaces6 ( 9 ), 6944 – 6953 ( 2014 ).
  • Guo R , WangH , PengCet al. Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid . J. Mater. Chem.21 ( 13 ), 5120 – 5127 ( 2011 ).
  • Peng C , LiK , CaoXet al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications . Nanoscale4 ( 21 ), 6768 – 6778 ( 2012 ).
  • Chen J , CaoX , GuoRet al. A highly effective polymerase chain reaction enhancer based on dendrimer-entrapped gold nanoparticles . Analyst137 ( 1 ), 223 – 228 ( 2012 ).
  • Cao X , ShenM , ZhangX , HuJ , WangJ , ShiX . Effect of the surface functional groups of dendrimer-entrapped gold nanoparticles on the improvement of PCR . Electrophoresis33 ( 16 ), 2598 – 2603 ( 2012 ).
  • Shan Y , LuoT , PengCet al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors . Biomaterials33 ( 10 ), 3025 – 3035 ( 2012 ).
  • Xiao T , HouW , CaoX , WenS , ShenM , ShiX . Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications . Biomater. Sci.1 ( 11 ), 1172 – 1180 ( 2013 ).
  • Hussain N , SinghB , SakthivelT , FlorenceAT . Formulation and stability of surface-tethered DNA-gold-dendron nanoparticles . Int. J. Pharm.254 ( 1 ), 27 – 31 ( 2003 ).
  • Singh B , HussainN , SakthivelT , FlorenceAT . Effect of physiological media on the stability of surface-adsorbed DNA-dendron-gold nanoparticles . J. Pharm. Pharmacol.55 ( 12 ), 1635 – 1640 ( 2003 ).
  • Papp I , SiebenC , LudwigKet al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles . Small6 ( 24 ), 2900 – 2906 ( 2010 ).
  • Vonnemann J , SiebenC , WolffCet al. Virus inhibition induced by polyvalent nanoparticles of different sizes . Nanoscale6 ( 4 ), 2353 – 2360 ( 2014 ).
  • Cho TJ , MaccuspieRI , GigaultJ , GorhamJM , ElliottJT , HackleyVA . Highly stable positively charged dendron-encapsulated gold nanoparticles . Langmuir30 ( 13 ), 3883 – 3893 ( 2014 ).
  • Wu P , YanXP . Doped quantum dots for chemo/biosensing and bioimaging . Chem. Soc. Rev.42 ( 12 ), 5489 – 5521 ( 2013 ).
  • Smith AM , DuanHW , MohsAM , NieSM . Bioconjugated quantum dots for in vivo molecular and cellular imaging . Adv. Drug Deliv. Rev.60 ( 11 ), 1226 – 1240 ( 2008 ).
  • Zhang JG , XuSQ , KumachevaE . Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles . J. Am. Chem. Soc.126 ( 25 ), 7908 – 7914 ( 2004 ).
  • Wang YA , LiJJ , ChenH , PengX . Stabilize inorganic nanocrystals by organic dendrons . J. Am. Chem. Soc.124 ( 10 ), 2293 – 2298 ( 2002 ).
  • Guo W , LiJJ , WangYA , PengX . Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability . J. Am. Chem. Soc.125 ( 13 ), 3901 – 3909 ( 2003 ).
  • Guo W , LiJJ , WangYA , PengX . Conjugation chemistry and bio-applications of semiconductor box-nanocrystals prepared via dendrimer-bridging . Chem. Mater.15 ( 16 ), 3125 – 3133 ( 2003 ).
  • Chen CT , MunotYS , SalunkeSBet al. . A triantennary dendritic galactoside-capped nanohybrid with a ZnS/CdSe nanoparticle core as a hydrophilic, fluorescent, multivalent probe for metastatic lung cancer cells . Adv. Funct. Mater.18 , 527 – 545 ( 2008 ).
  • Chen CT , PawarVD , MunotYS , ChenCC , HsuCJ . Diethylene glycol ether-linked 3,4,5-trihydroxybenzamides as triply branched dendritic anchors to CdSe/ZnS core/shell type nanoparticles: potential hydrophilic fluorescent probes . Chem. Commun.19 , 2483 – 2485 ( 2005 ).
  • De la Fuente JM , Penade’sS . Understanding carbohydrate-carbohydrate. Interactions by means of glyconanotechnology . Glycoconjugate J.21 ( 3–4 ), 149 – 163 ( 2004 ).
  • Algarra M , CamposBB , GomesDet al. . Thiolated DAB dendrimer/ZnSe nanoparticles for C-reactive protein recognition inhumanserum . Talanta99 , 574 – 579 ( 2012 ).
  • Liu Y , BrandonR , CateM . Sensitive and rapid detection of pathogens using luminescent CdSe/ZnSdendron-nanocrystals and a porous membrane immunofilter . Anal. Chem.79 ( 22 ), 8796 – 8802 ( 2007 ).
  • Moussodia RO , BalanL , MerlinC , MustinC , SchneiderR . Biocompatible and stable ZnO quantum dots generated by functionalization with siloxane-core PAMAM dendrons . J. Mater. Chem.20 , 1147 – 1155 ( 2010 ).
  • Gao J , ChenK , LuongR , BouleyDM , MaoH , QiaoT , GambhirSS , ChengZ . A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects . Nano. Lett.12 ( 1 ), 281 – 286 ( 2012 ).
  • Li Z , BenzhaoH , JiachangH , ZehongCet al. Multihydroxy dendritic upconversion nanoparticles with enhanced water dispersibility and surface functionality for bioimaging . ACS Appl. Mater. Interfaces6 , 7719 – 7727 ( 2014 ).
  • Chevallier P , WalterA , GarofaloAet al. Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging . J. Mater. Chem. B2 , 1779 – 1790 ( 2014 ).
  • Hongdong C , KanganL , MingwuS , ShihuiW , YuL , ChenZet al. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications . J. Mater. Chem.22 , 15110 – 15120 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.