287
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanodiagnostics, Nanopharmacology and Nanotoxicology of Platelet–Vessel Wall Interactions

, &
Pages 1451-1475 | Published online: 21 May 2015

References

  • Cimmino G , GolinoP . Platelet biology and receptor pathways . J. Cardiovasc. Transl. Res.6 ( 3 ), 299 – 309 ( 2013 ).
  • Smyth SS , McEverRP , WeyrichASet al. Platelet functions beyond hemostasis . J. Thromb. Haemost.7 ( 11 ), 1759 – 1766 ( 2009 ).
  • Santos-Martinez MJ , Prina-MelloA , MedinaC , RadomskiMW . Analysis of platelet function: role of microfluidics and nanodevices . Analyst136 ( 24 ), 5120 – 5126 ( 2011 ).
  • Semple JW , ItalianoJEJr , FreedmanJ . Platelets and the immune continuum . Nat. Rev. Immunol.11 ( 4 ), 264 – 274 ( 2011 ).
  • Cloutier N , ParéA , FarndaleRWet al. Platelets can enhance vascular permeability . Blood120 ( 6 ), 1334 – 1343 ( 2012 ).
  • Radziwon-Balicka A , Santos-MartinezMJ , CorbalanJJet al. Mechanisms of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway . Carcinogenesis35 ( 2 ), 324 – 332 ( 2014 ).
  • McNaughton L , RadomskiA , SawickiG , RadomskiMW . Regulation of platelet function . In : Nitric Oxide (Handbook of Experimental Pharmacology) . MayerB ( Ed. ). Springer-Verlag , NY, USA , 235 – 258 ( 2000 ).
  • Shadden SC , HendabadiS . Potential fluid mechanic pathways of platelet activation . Biomech. Model. Mechanobiol.12 ( 3 ), 467 – 474 ( 2013 ).
  • Gitz E , KoopmanCD , GiannasAet al. Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibα . Haematologica98 ( 11 ), 1810 – 1818 ( 2013 ).
  • Ruggeri ZM . Platelet Adhesion under Flow . Microcirculation16 , 58 – 83 ( 2009 ).
  • Sakariassen K . Thrombus formation on apex of arterial stenoses: the need for a fluid high shear . Future Cardiol.3 ( 2 ), 193 – 201 ( 2007 ).
  • Zheng Y , ChenJ , LópezJA . Microvascular platforms for the study of platelet–vessel wall interactions . Thromb. Res.133 ( 4 ), 525 – 531 ( 2014 ).
  • Westein E , van der MeerAD , KuijpersMJE , FrimatJP , van den BergA , HeemskerkJWM . Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner . Proc. Natl Acad. Sci. USA110 ( 4 ), 1357 – 1362 ( 2013 ).
  • Jackson SP . Arterial thrombosis-insidious, unpredictable and deadly . Nat. Med.17 ( 11 ), 1423 – 1436 ( 2011 ).
  • Ruggeri ZM , DentJA , SaldivarE . Contribution of distinct adhesive interactions to platelet aggregation in flowing blood . Blood94 ( 1 ), 172 – 178 ( 1999 ).
  • Kanaji S , FahsSA , ShiQ , HaberichterSL , MontgomeryRR . Contribution of platelet vs endothelial VWF to platelet adhesion and hemostasis . J. Thromb. Haemost.10 ( 8 ), 1646 – 1652 ( 2012 ).
  • Goyette RE , KeyNS , ElyEW . Hematologic changes in sepsis and their therapeutic implications . Semin. Respir. Crit Care. Med.25 ( 6 ), 645 – 659 ( 2004 ).
  • Nachman RL , RafiiS . Platelets, petechiae, and preservation of the vascular wall . N. Engl. J. Med.359 ( 12 ), 1261 – 1270 ( 2008 ).
  • Reitsma S , Oude EgbrinkMG , HeijnenVVet al. Endothelial glycocalyx thickness and platelet–vessel wall interactions during atherogenesis . Thromb. Haemost.106 ( 5 ), 939 – 946 ( 2011 ).
  • Moncada S , GryglewskiR , BuntingS , VaneJR . An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation . Nature263 ( 5579 ), 663 – 665 ( 1976 ).
  • Stitham J , ArehartE , ElderonLet al. Comprehensive biochemical analysis of rare prostacyclin receptor variants: study of association of signaling with coronary artery obstruction . J. Biol. Chem.286 ( 9 ), 7060 – 7069 ( 2011 ).
  • Yuhki K , KojimaF , KashiwagiHet al. Roles of prostanoids in the pathogenesis of cardiovascular diseases: novel insights from knockout mouse studies . Pharmacol. Ther.129 ( 2 ), 195 – 205 ( 2011 ).
  • Noe L , PeetersK , IzziB , Van GeetC , FresonK . Regulators of platelet cAMP levels: clinical and therapeutic implications . Curr. Med. Chem.17 ( 26 ), 2897 – 2905 ( 2010 ).
  • Radomski MW , PalmerRM , MoncadaS . Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells . Proc. Natl Acad. Sci. USA87 ( 24 ), 10043 – 10047 ( 1990 ).
  • Palmer RM , FerrigeAG , MoncadaS . Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor . Nature327 ( 6122 ), 524 – 526 ( 1987 ).
  • Radomski MW , MoncadaS . Regulation of vascular homeostasis by nitric oxide . Thromb. Haemost.70 ( 1 ), 36 – 41 ( 1993 ).
  • Radomski MW , PalmerRM , MoncadaS . Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium . Lancet2 ( 8567 ), 1057 – 1058 ( 1987 ).
  • Radomski MW , PalmerRM , MoncadaS . An L-arginine/nitric oxide pathway present in human platelets regulates aggregation . Proc. Natl Acad. Sci. USA87 ( 13 ), 5193 – 5197 ( 1990 ).
  • Radomski MW , PalmerRM , MoncadaS . Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets . Br. J. Pharmacol.92 ( 1 ), 181 – 187 ( 1987 ).
  • Gayle RB 3rd , MaliszewskiCR , GimpelSDet al. Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39 . J. Clin. Invest.101 ( 9 ), 1851 – 1859 ( 1998 ).
  • Santos-Martinez MJ , MedinaC , GilmerJF , RadomskiMW . Matrix metalloproteinases in platelet function: coming of age . J. Thromb. Haemost.6 ( 3 ), 514 – 516 ( 2008 ).
  • Austin SK . Hemostasis . Medicine41 ( 4 ), 208 – 211 ( 2013 ).
  • Chung AW , RadomskiA , Alonso-EscolanoDet al. Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinases . Br. J. Pharmacol.143 ( 7 ), 845 – 855 ( 2004 ).
  • Nakamura S , TakayamaN , HirataSet al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells . Cell Stem Cell14 ( 4 ), 535 – 548 ( 2014 ).
  • Goerge T , KleineruschkampF , BargAet al. Microfluidic reveals generation of platelet-strings on tumor-activated endothelium . Thromb. Haemost.98 ( 2 ), 283 – 286 ( 2007 ).
  • Ku CJ , OblakTD , SpenceDM . Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an anti-adhesion drug . Anal. Chem.80 ( 19 ), 7543 – 7548 ( 2008 ).
  • Tsai M , KitaA , LeachJet al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology . J. Clin. Invest.122 ( 1 ), 408 – 418 ( 2012 ).
  • Wong KHK , TruslowJG , TienJ . The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels . Biomaterials31 ( 17 ), 4706 – 4714 ( 2010 ).
  • Price GM , WongKHK , TruslowJG , LeungAD , AcharyaC , TienJ . Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels . Biomaterials31 ( 24 ), 6182 – 6189 ( 2010 ).
  • Morgan JP , DelneroPF , ZhengYet al. Formation of microvascular networks in vitro . Nat. Protoc.8 ( 9 ), 1820 – 1836 ( 2013 ).
  • Zheng Y , ChenJ , CravenMet al. In vitro microvessels for the study of angiogenesis and thrombosis . Proc. Natl Acad. Sci. USA109 ( 24 ), 9342 – 9347 ( 2012 ).
  • Huang Z , LiX , Martins-GreenM , LiuY . Microfabrication of cylindrical microfluidic channel networks for microvascular research . Biomed. Microdevices14 ( 5 ), 873 – 883 ( 2012 ).
  • Santos-Martinez MJ , Inkielewicz-StepniakI , MedinaCet al. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation . Int. J. Nanomedicine7 , 243 – 255 ( 2012 ).
  • Jurasz P , Alonso-EscolanoD , RadomskiMW . Platelet-cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation . Br. J. Pharmacol.143 ( 7 ), 819 – 826 ( 2004 ).
  • Bazou D , Santos-MartinezMJ , MedinaC , RadomskiMW . Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap . Br. J. Pharmacol.162 ( 7 ), 1577 – 1589 ( 2011 ).
  • Jain KK . Nanotechnology in clinical laboratory diagnostics . Chim. Acta358 ( 1–2 ), 37 – 54 ( 2005 ).
  • Jacobin-Valat MJ , DeramchiaK , MornetSet al. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis . NMR Biomed.24 ( 4 ), 413 – 424 ( 2011 ).
  • Aurich K , SpoerlMC , FürllBet al. Development of a method for magnetic labeling of platelets . Nanomedicine8 ( 5 ), 537 – 544 ( 2012 ).
  • Shapiro EM , SkrticS , SharerK , HillJM , DunbarCE , KoretskyAP . MRI detection of single particles for cellular imaging . Proc. Natl Acad. Sci. USA101 , 10901 – 10906 ( 2004 ).
  • Schlorf T , MeinckeM , KosselE , GluerCC , JansenO , MentleinR . Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging . Int. J. Mol. Sci.12 ( 1 ), 12 – 23 ( 2010 ).
  • Ruehm SG , CorotC , VogtP , KolbS , DebatinJF . Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits . Circulation103 ( 3 ), 415 – 422 ( 2001 ).
  • Suzuki M , Bachelet-VioletteL , RouzetFet al. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus . Nanomedicine (Lond.)10 ( 1 ), 73 – 87 ( 2015 ).
  • Chung HJ , JeunJ , HoungSJ , JunHJ , KweonDK , LeeSJ . Toxicological evaluation of fucoidan from Undaria pinnatifida in vitro and in vivo . Phytother. Res.24 ( 7 ), 1078 – 1083 ( 2010 ).
  • Michalska M , MachtoubL , MantheyHDet al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles . Arterioscler. Thromb. Vasc. Biol.32 ( 10 ), 2350 – 2357 ( 2012 ).
  • Prinzen L , MiserusRJ , DirksenAet al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots . Nano Lett.7 ( 1 ), 93 – 100 ( 2007 ).
  • Woolley R , RoyS , PrendergastÚet al. From particle to platelet: optimization of a stable, high brightness fluorescent nanoparticle based cell detection platform . Nanomedicine9 ( 4 ), 540 – 549 ( 2013 ).
  • Davies A , LewisDJ , WatsonSP , ThomasSG , PikramenouZ . pH-controlled delivery of luminescent europium coated nanoparticles into platelets . Proc. Natl Acad. Sci. USA109 ( 6 ), 1862 – 1867 ( 2012 ).
  • Oldenburg AL , GallippiCM , TsuiFet al. Magnetic and contrast properties of labeled platelets for magnetomotive optical coherence tomography . Biophys. J.99 ( 7 ), 2374 – 2383 ( 2010 ).
  • von zur Muhlen C , von ElverfeldtD , MoellerJAet al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis . Circulation118 ( 3 ), 258 – 267 ( 2008 ).
  • Quillard T , LibbyP . Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development . Circ. Res.111 ( 2 ), 231 – 244 ( 2012 ).
  • Wildgruber M , SwirskiFK , ZerneckeA . Molecular imaging of inflammation in atherosclerosis . Theranostics3 ( 11 ), 865 – 884 ( 2013 ).
  • Osterhoudt KC , PenningTM . Drug toxicity and poisoning . In : Goodman & Gilman’s The Pharmacological Basis of Therapeutics (12th Edition) . BruntonL , ChabnerB , KnollmanB ( Eds ). McGraw-Hill , NY, USA , 73 – 87 ( 2011 ).
  • Medina C , Santos-MartinezMJ , RadomskiA , CorriganOI , RadomskiMW . Nanoparticles: pharmacological and toxicological significance . Br. J. Pharmacol.150 ( 5 ), 552 – 558 ( 2007 ).
  • Jain K , MehraNK , JainNK . Potentials and emerging trends in nanopharmacology . Curr. Opin. Pharmacol.15 , 97 – 106 ( 2014 ).
  • McCarthy J , GongX , NahirneyD , DuszykM , RadomskiM . Polystyrene nanoparticles activate ion transport in human airway epithelial cells . Int. J. Nanomedicine6 , 1343 – 1356 ( 2011 ).
  • Ilinskaya AN , DobrovolskaiaMA . Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology . Nanomedicine (Lond.)8 ( 5 ), 773 – 784 ( 2013 ).
  • Rybak ME , RenzulliLA . A liposome based platelet substitute, the plateletsome, with hemostatic efficacy . Biomater. Artif. Cells Immobilization Biotechnol.21 ( 2 ), 101 – 118 ( 1993 ).
  • Modery-Pawlowski CL , TianLL , RavikumarM , WongTL , Sen GuptaA . In vitro and in vivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct . Biomaterials34 ( 12 ), 3031 – 3041 ( 2013 ).
  • Nishikawa K , HagisawaK , KinoshitaMet al. Fibrinogen γ-chain peptide-coated, ADP-encapsulated liposomes rescue thrombocytopenic rabbits from non-compressible liver hemorrhage . J. Thromb. Haemost.10 ( 10 ), 2137 – 2148 ( 2012 ).
  • Taguchi K , UjihiraH , OgakiSet al. Pharmacokinetic study of the structural components of adenosine diphosphate-encapsulated liposomes coated with fibrinogen γ-chain dodecapeptide as a synthetic platelet substitute . Drug Metab. Dispos.41 ( 8 ), 1584 – 1591 ( 2013 ).
  • Anselmo AC , Modery-PawlowskiCL , MenegattiSet al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries . ACS Nano8 ( 11 ), 11243 – 11253 ( 2014 ).
  • Okamura Y , FukuiY , KabataKet al. Novel platelet substitutes: disk-shaped biodegradable nanosheets and their enhanced effects on platelet aggregation . Bioconjug. Chem.20 ( 10 ), 1958 – 1965 ( 2009 ).
  • Doshi N , OrjeJN , MolinsB , SmithJW , MitragotriS , RuggeriZM . Platelet mimetic particles for targeting thrombi in flowing blood . Adv. Mater.24 ( 28 ), 3864 – 3869 ( 2012 ).
  • Bertram JP , WilliamsCA , RobinsonR , SegalSS , FlynnNT , LavikEB . Intravenous hemostat: nanotechnology to halt bleeding . Sci. Transl. Med.1 ( 11 ), 11ra22 ( 2009 ).
  • Cockburn A , BradfordR , BuckNet al. Approaches to the safety assessment of engineered nanomaterials (ENM) in food . Food Chem. Toxicol.50 ( 6 ), 2224 – 2242 ( 2012 ).
  • Asencio LA , HuangJJ , AlpertJS . Combining antiplatelet and antithrombotic therapy (triple therapy): what are the risks and benefits?Am. J. Med.127 ( 7 ), 579 – 585 ( 2014 ).
  • Li X , RadomskiA , CorriganOIet al. Platelet compatibility of PLGA, chitosan and PLGA-chitosan nanoparticles . Nanomedicine (Lond.)4 ( 7 ), 735 – 746 ( 2009 ).
  • Srinivasan R , MarchantRE , GuptaAS . In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes . J. Biomed. Mater. Res. A.93 ( 3 ), 1004 – 1015 ( 2010 ).
  • Zhu J , XueJ , GuoZ , ZhangL , MarchantRE . Biomimetic glycoliposomes as nanocarriers for targeting P-selectin on activated platelets . Bioconjug. Chem.18 ( 5 ), 1366 – 1369 ( 2007 ).
  • Xu H , KonaS , SuLCet al. Multi-ligand poly(L-lactic-co-glycolic acid) nanoparticles inhibit activation of endothelial cells . J. Cardiovasc. Transl. Res.6 ( 4 ), 570 – 578 ( 2013 ).
  • Kona S , DongJF , LiuY , TanJ , NguyenKT . Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system . Int. J. Pharm.423 ( 2 ), 516 – 524 ( 2012 ).
  • Lin A , SabnisA , KonaSet al. Shear-regulated uptake of nanoparticles by endothelial cells and development of endothelial-targeting nanoparticles . J. Biomed. Mater. Res. A.93 ( 3 ), 833 – 842 ( 2010 ).
  • Durán-Lara E , GuzmánL , JohnAet al. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy . Eur. J. Med. Chem.69 , 601 – 608 ( 2013 ).
  • Han J , ZernBJ , ShuvaevVV , DaviesPF , MuroS , MuzykantovV . Acute and chronic shear stress differently regulate endothelial internalization of nanocarriers targeted to platelet-endothelial cell adhesion molecule-1 . ACS Nano6 ( 10 ), 8824 – 8836 ( 2012 ).
  • Shi W , MeiH , DengJet al. A tissue factor targeted nanomedical system for thrombi-specific drug delivery . Biomaterials33 ( 30 ), 7643 – 7654 ( 2012 ).
  • Charoenphol P , OnyskiwPJ , Carrasco-TejaM , Eniola-AdefesoO . Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery . J. Biomech.45 ( 16 ), 2822 – 2828 ( 2012 ).
  • Wardlaw JM , MurrayV , BergeE , del ZoppoGJ . Thrombolysis for acute ischaemic stroke . Cochrane Database Syst. Rev.7 , CD000213 ( 2014 ).
  • Korin N , KanapathipillaiM , MatthewsBDet al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels . Science337 ( 6095 ), 738 – 742 ( 2012 ).
  • Yousefpour P , ChilkotiA . Co-opting biology to deliver drugs . Biotechnol. Bioeng.111 ( 9 ), 1699 – 1716 ( 2014 ).
  • Shi Q , WilcoxD , FahsSet al. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A . J. Thromb. Haemost.5 ( 2 ), 352 – 361 ( 2007 ).
  • Sarkar S , AlamMA , ShawJ , DasguptaAK . Drug delivery using platelet cancer cell interaction . Pharm. Res.30 ( 11 ), 2785 – 2794 ( 2013 ).
  • Howard M , ZernBJ , AnselmoAC , ShuvaevVV , MitragotriS , MuzykantovV . Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm . ACS Nano8 ( 5 ), 4100 – 4132 ( 2014 ).
  • Donaldson K , StoneV , TranCL , KreylingW , BormPJ . Nanotoxicology . Occup. Environ. Med.61 ( 9 ), 727 – 728 ( 2004 ).
  • Oberdörster G , OberdörsterE , OberdörsterJ . Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles . Environ. Health Perspect.113 ( 7 ), 823 – 839 ( 2005 ).
  • Nel A , XiaT , MadlerL , LiN . Toxic potential of materials at the nanolevel . Science311 ( 5761 ), 622 – 627 ( 2006 ).
  • Tavano R , SegatD , ReddiEet al. Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles . Nanomedicine (Lond.)5 ( 6 ), 881 – 896 ( 2010 ).
  • Corbalan JJ , MedinaC , JacobyA , MalinskiT , RadomskiMW . Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis . Int. J. Nanomedicine7 , 631 – 639 ( 2012 ).
  • Corbalan JJ , MedinaC , JacobyA , MalinskiT , RadomskiMW . Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects . Int. J. Nanomedicine6 , 2821 – 2835 ( 2011 ).
  • Lesniak A , SalvatiA , Santos-MartinezMJ , RadomskiMW , DawsonKA , ÅbergC . Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency . J. Am. Chem. Soc.135 ( 4 ), 1438 – 1444 ( 2013 ).
  • Lundqvist M , StiglerJ , EliaG , LynchI , CedervallT , DawsonKA . Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts . Proc. Natl Acad. Sci. USA105 ( 38 ), 14265 – 14270 ( 2008 ).
  • Yang L , KuangH , ZhangWet al. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice . Nanoscale7 ( 2 ), 625 – 636 ( 2014 ).
  • Lin X , LiJ , MaSet al. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry . PLoS ONE9 ( 10 ), e110247 ( 2014 ).
  • Nemmar A , HoetPH , VanquickenborneBet al. Passage of inhaled particles into the blood circulation in humans . Circulation105 ( 4 ), 411 – 414 ( 2002 ).
  • Donaldson K , TranL , JimenezLAet al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure . Part. Fibre Toxicol.2 , 10 ( 2005 ).
  • Radomski A , JuraszP , Alonso-EscolanoDet al. Nanoparticle-induced platelet aggregation and vascular thrombosis . Br. J. Pharmacol.146 ( 6 ), 882 – 893 ( 2005 ).
  • Guidetti GF , ConsonniA , CipollaL , MustarelliP , BalduiniC , TortiM . Nanoparticles induce platelet activation in vitro through stimulation of canonical signalling pathways . Nanomedicine8 ( 8 ), 1329 – 1336 ( 2012 ).
  • Bihari P , HolzerM , PraetnerMet al. Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation . Toxicology269 ( 2–3 ), 148 – 154 ( 2010 ).
  • Gaffney AM , Santos-MartinezMJ , SattiAet al. Blood biocompatibility of surface-bound multi-walled carbon nanotubes . Nanomedicine11 ( 1 ), 39 – 46 ( 2014 ).
  • Miller MR , BorthwickSJ , ShawCAet al. Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals . Environ. Health Perspect.117 ( 4 ), 611 – 616 ( 2009 ).
  • Miller MR , McLeanSG , DuffinRet al. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice . Part. Fibre Toxicol.10 , 61 ( 2013 ).
  • Solomon A , SmythE , MithaNet al. Induction of platelet aggregation after a direct physical interaction with diesel exhaust particles . J. Thromb. Haemost.11 ( 2 ), 325 – 334 ( 2013 ).
  • Vesterdal LK , MikkelsenL , FolkmannJKet al. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments . Toxicol. Lett.214 ( 1 ), 19 – 26 ( 2012 ).
  • Kumari S , SinghMK , SinghSK , GrácioJJ , DashD . Nanodiamonds activate blood platelets and induce thromboembolism . Nanomedicine (Lond.)9 ( 3 ), 427 – 440 ( 2014 ).
  • Wang H , DuLJ , SongZM , ChenXX . Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food . Nanomedicine (Lond.)8 ( 12 ), 2007 – 2025 ( 2013 ).
  • Jun EA , LimKM , KimKet al. Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity . Nanotoxicology5 ( 2 ), 157 – 167 ( 2011 ).
  • Stevens KN , KnetschML , SenA , SambhyV , KooleLH . Disruption and activation of blood platelets in contact with an antimicrobial composite coating consisting of a pyridinium polymer and AgBr nanoparticles . ACS Appl. Mater. Interfaces1 ( 9 ), 2049 – 2054 ( 2009 ).
  • Smock KJ , SchmidtRL , HadlockG , StoddardG , GraingerDW , MungerMA . Assessment of orally dosed commercial silver nanoparticles on human ex vivo platelet aggregation . Nanotoxicology8 ( 3 ), 328 – 333 ( 2014 ).
  • Krajewski S , PrucekR , PanacekAet al. Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood . Acta Biomater.9 ( 7 ), 7460 – 7468 ( 2013 ).
  • Shrivastava S , BeraT , SinghSK , SinghG , RamachandraraoP , DashD . Characterization of antiplatelet properties of silver nanoparticles . ACS Nano3 ( 6 ), 1357 – 1364 ( 2009 ).
  • Ragaseema VM , UnnikrishnanS , Kalliyana KrishnanV , KrishnanLK . The antithrombotic and antimicrobial properties of PEG-protected silver nanoparticle coated surfaces . Biomaterials33 ( 11 ), 3083 – 3092 ( 2012 ).
  • Meier FM , FrerixM , HermannW , Müller-LadnerU . Current immunotherapy in rheumatoid arthritis . Immunotherapy5 ( 9 ), 955 – 974 ( 2013 ).
  • Kim BY , RutkaJT , ChanWC . Nanomedicine . N. Engl. J. Med.363 ( 25 ), 2434 – 2443 ( 2010 ).
  • Love SA , ThompsonJW , HaynesCL . Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles . Nanomedicine (Lond.)7 ( 9 ), 1355 – 1364 ( 2012 ).
  • Deb S , PatraHK , LahiriP , DasguptaAK , ChakrabartiK , ChaudhuriU . Multistability in platelets and their response to gold nanoparticles . Nanomedicine7 ( 4 ), 376 – 384 ( 2011 ).
  • Santos-Martinez MJ , RahmeK , CorbalanJJet al. Pegylation increases platelet biocompatibility of gold nanoparticles . J. Biomed. Nanotechnol.10 ( 6 ), 1004 – 1015 ( 2014 ).
  • McGuinnes C , DuffinR , BrownSet al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro . Toxicol. Sci.119 ( 2 ), 359 – 368 ( 2011 ).
  • Mayer A , VadonM , RinnerB , NovakA , WintersteigerR , FröhlichE . The role of nanoparticle size in hemocompatibility . Toxicology258 ( 2–3 ), 139 – 147 ( 2009 ).
  • Torres-Lugo M , RinaldiC . Thermal potentiation of chemotherapy by magnetic nanoparticles . Nanomedicine (Lond.)8 ( 10 ), 1689 – 1707 ( 2013 ).
  • Herrmann IK , UrnerM , HaslerMet al. Iron core/shell nanoparticles as magnetic drug carriers: possible interactions with the vascular compartment . Nanomedicine (Lond.)6 ( 7 ), 1199 – 1213 ( 2011 ).
  • Su L , HanL , GeFet al. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo . J. Hazard. Mater.235–236 , 316 – 325 ( 2012 ).
  • Dunpall R , NejoAA , PullabhotlaVS , OpokuAR , RevaprasaduN , ShonhaiA . An in vitro assessment of the interaction of cadmium selenide quantum dots with DNA, iron, and blood platelets . IUBMB. Life64 ( 12 ), 995 – 1002 ( 2012 ).
  • Jones CF , CampbellRA , FranksZet al. Cationic PAMAM dendrimers disrupt key platelet functions . Mol. Pharm.9 ( 6 ), 1599 – 1611 ( 2012 ).
  • Jones CF , CampbellRA , BrooksAEet al. Cationic PAMAM dendrimers aggressively initiate blood clot formation . ACS Nano6 ( 11 ), 9900 – 9910 ( 2012 ).
  • Dobrovolskaia MA , PatriAK , SimakJet al. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro . Mol. Pharm.9 ( 3 ), 382 – 393 ( 2012 ).
  • Schwartz MK , LieskeJC , MillerVM . Contribution of biologically derived nanoparticles to disease . Surgery147 ( 2 ), 181 – 184 ( 2010 ).
  • Miller VM , HunterLW , ChuKet al. Biologic nanoparticles and platelet reactivity . Nanomedicine (Lond.)4 ( 7 ), 725 – 733 ( 2009 ).
  • Rabolli V , ThomassenLC , PrincenCet al. Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types . Nanotoxicology4 ( 3 ), 307 – 318 ( 2010 ).
  • Zhu MT , WangB , WangYet al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis . Toxicol. Lett.203 ( 2 ), 162 – 171 ( 2011 ).
  • Danielsen PH , CaoY , RoursgaardM , M⊘llerP , LoftS . Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials . Nanotoxicology doi:10.3109/17435390.2014.980449 ( 2014 ) ( Epub ahead of print ).
  • Smulders S , LuytsK , BrabantsGet al. Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles, in vitro study . Toxicol. Lett.232 ( 2 ), 333 – 339 ( 2015 ).
  • Mikkelsen L , JensenKA , KoponenIKet al. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles . Nanotoxicology7 ( 2 ), 117 – 134 ( 2013 ).
  • Sisler JD , PirelaSV , FriendSet al. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model . Nanotoxicology doi:10.3109/17435390.2014.976603 ( 2014 ) ( Epub ahead of print ).
  • Strobel C , FörsterM , HilgerI . Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells . Beilstein J. Nanotechnol.5 , 1795 – 1807 ( 2014 ).
  • Strobel C , TorranoAA , HerrmannRet al. Effects of the physicochemical properties of titanium dioxide nanoparticles, commonly used as sun protection agents, on microvascular endothelial cells . J. Nanopart. Res.16 , 2130 ( 2014 ).
  • Ilinskaya AN , DobrovolskaiaMA . Nanoparticles and the blood coagulation system. Part II: safety concerns . Nanomedicine (Lond.)8 ( 6 ), 969 – 981 ( 2013 ).
  • Smyth E , SolomonA , VydyanathAet al. Induction and enhancement of platelet aggregation in vitro and in vivo by model polystyrene nanoparticles . Nanotoxicology doi:10.3109/17435390.2014.933902 ( 2014 ) ( Epub ahead of print ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.