238
Views
0
CrossRef citations to date
0
Altmetric
Review

Is There A Future for Electrochemically Assisted Hemodialysis? Focus on The Application of Polypyrrole–Nanocellulose Composites

&
Pages 1095-1110 | Published online: 30 Jun 2014

References

  • Vanholder R , SmetRD, GlorieuxGet al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int.63, 1934–1943 (2003).  
  • Bowry SK . Dialysis membranes today. Int. J. Arti. Org.25 (5), 447–460 (2002).
  • Ofsthun NJ . Limitations of membrane structure and dialyzer design on large solute removal in dialysis. Blood Purif.18 (4), 264–266 (2000).
  • Vienken J . Polymers in nephrology: characteristics and needs. Int. J. Art. Org.25 (5), 470–479 (2002).
  • Zweigart C , NeubauerM, StorrM, BöhlerT, KrauseB. Progress in the development of membranes for kidney-replacement therapy. In: Comprehensive Membrane Sscience and Engneering, DrioliE, GiornoL (Eds). Elsevier BV, Oxford, UK, 351–390 (2010).  
  • Schmid H , SchifflH. Hemodiafiltration and survival of end-stage renal disease patients: the long journey goes on. Int. Urol. Nephr.44 (5), 1435–1440 (2012).
  • Vanholder R , BaurmeisterU, BrunetP, CohenG, GlorieuxG, JankowskiJ. A bench to bedside view of uremic toxins. J. Am. Soc. Nephr.19 (5), 863–870 (2008).
  • Sarnatskaya VV , YushkoLA, SakhnoLAet al. New approaches to the removal of protein-bound toxins from blood plasma of uremic patients. Art. Cells, Blood Subst. Biotech.35 (3), 287–308 (2007).
  • Niwa T . Removal of protein bound uraemic toxins by hemodialysis. Blood Purif.35 (2), 20–25 (2013).
  • Fissell WH , HumesHD, FleischmanAJ, RoyS. Dialysis and nanotechnology: now, 10 years, or never?Blood Purif.25, 12–17 (2007).
  • Humes HD , FissellWH, TiranathanagulK. The future of hemodialysis membranes. Kidney Int.69, 1115–1119 (2006).
  • Leonard EF , CortellS, VitaleNG. Membraneless dialysis- is it possible?Contr. Nephr.149, 343–353 (2005).
  • Nissenson AR , RoncoC, PergamitG, EdelsteinM, WattsR. Continuously functioning artificial nephron system: the promise of nanotechnology. Hemodial. Int.9 (3), 210–217 (2005).
  • Stamopoulos D . Magnetic nanoparticles utilized in hemodialysis for the treatment of hyperhomocysteinemia: the new challenge for nanobiotechnology. Curr. Nanosci.4, 302–307 (2008).
  • Tijink MSL , WesterM, SunJet al. A novel approach for blood purification: Mixed-matrix combining diffusion and adsorption in one step. Acta Biomat.8, 2279–2287 (2012).
  • Leonard EF , WestAC, ShapleyNC, LarsenMU. Dialysis without membranes:how and why?Blood Purif.22, 92–100 (2004).
  • Hedayat A , ElmoselhiH, ShokerA. Theoretical application of irreversible (nonequilibrium) thermodynamic principles to enhance solute fluxes across nanofabricated hemodialysis membranes. Int. J. Nephr.2012, 718085 (2012).
  • Kokubo K , OtaniY, TsukaoH, ShiboT, HiroseM, KobayashiH. Urea concentrating ability of artificial renal tubule based on countercurrent multiplyer system using electrodialysis, dialysis and filtration. IFMBE Proc.25 (7), 499–501 (2009).
  • Pirot F , FaivreV, BourhisY, AulagnerG, FalsonF. Faster phenytoin removal from serum by electrodialysis: a potential use in hemodialysis?J. Memb. Sci.207, 265–272 (2002).
  • Smith AL , BerkowitzHD, BluemleLWJr. Electrodialysis of blood: evaluation of a high capacity unit. Trans. Am. Soc. Art. Int. Org.10, 273–279 (1964).
  • Bernhard A , BeaverJJ. The electrodialysis of human blood serum. J. Biol. Chem.69, 113–124 (1926).
  • Lyttle D . Electrodialysis of blood using ion-exchange membranes. Ulster Med. J.31, 79–81 (1962).
  • Sorrentino F . Die künstliche elektrodialytische Niere mit geschlossenem Kreislauf. Z. Urol.9, 505–509 (1958).
  • Berkowitz H , BluemleLWJr. Electrodialysis: concept and preliminary studies of its application to blood. Trans. Am. Soc. Art. Int. Org.8, 197–208 (1962).
  • Berkowitz H , BluemleLWJr. Electrodialysis of blood: Some problems and approaches to their solution. Trans. Am. Soc. Art. Int. Org.9 (1), 97–104 (1963).
  • Adachi R . The studies on the Jikei electro-dialyzer report 7: fundamental problems. Acta Urol. Jap.7 (2), 274–282 (1961).
  • Hosobe H . Studies on the newly devised Jikeikai College artificial kidney. Report 2. Acta Urol. Jap.5, 179 (1959).
  • Kushimoto T . Studies on a newly devised artificial kidney (blood cleaner) report. 1. Acta Urol. Jap.4 (9), 509–512 (1958).
  • Matsumoto T . The studies on the Jikei electro-dialyzer report 6: the experimental study on the dialysis of the salicylate. Acta Urol. Jap.6 (11), 1059–1072 (1960).
  • Miki N . Studies on the newly devised jikeikai artificial kidney (blood cleaner). Report 3. The experimental studies on normal dogs and uremic dogs. Acta Urol. Japon.5 (3), 153–165 (1959).
  • Miki N . Studies on the Jikei electro-dialyzer report 5. The changes of the circulatory system during electrohemodialysis. Report 5. Acta Urol. Jap.6 (10), 859–881 (1960).
  • Miura Y . The Studies on the Jikei electro-dialyzer. Report 4. Fundamental problems. Acta Urol. Japon.6 (11), 1043–1058 (1960).
  • Ogata K . Studies om the Jikei electro-dialyzer: Report 8. Experimental studies of fundamental dialysing efficiency on the new type Jikei electrodialyzer with many dialysis chambers. Jap. J. Urol.56 (2), 176–197 (1965).
  • Miura Y . The studies on the Jikei electro-dialyzer. Report 4. Acta Urol. Japon.6 (11), 1043–1058 (1960).
  • Locatelli F , ManzoniC, Di FilippoS. The importance of convective transport. Kidney Int. (61 Suppl. 80), S115–S120 (2002).
  • Hintzen K , StillerS, BrunnerH, RautenbachR, MannH. Electrodialysis and reverse osmosis as a regeneration system for hemofiltrate. Art. Org.7 (2), 169–175 (1983).
  • Lin R , DingYS, WhiteJMet al. Hemodialysis and peritoneal dialysis systems having electrodialys and electrodeionization capabilities. 2013, 0186759A1 (2013).
  • Ferraz N , CarlssonDO, HongJet al. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J. R. Soc. Interf.9 (73), 1943–1955 (2012).  
  • Ferraz N , Str⊘mmeM, FellströmB, PradhanS, NyholmL, MihranyanA. In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. J. Biomed. Mat. Res. Pt A100 A (8), 2128–2138 (2012).  
  • Mihranyan A , NyholmL, Garcia BennettAE, Str⊘mmeM. A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J. Phys. Chem. B112 (39), 12249–12255 (2008).
  • Mihranyan A . Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J. App. Polymer Sci.119 (4), 2449–2460 (2011).
  • Mihranyan A , EdsmanK, Str⊘mmeM. Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll.21 (2), 267–272 (2007).
  • Str⊘mme M , FrenningG, RazaqA, GelinK, NyholmL, MihranyanA. Ionic motion in polypyrrole–cellulose composites: trap release mechanism during potentiostatic reduction. J. Phys.Chem. B113 (14), 4582–4589 (2009).
  • Gelin K , MihranyanA, RazaqA, NyholmL, Str⊘mmeM. Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochim. Acta54 (12), 3394–3401 (2009).
  • Loh IH , MoodyRA, HuangJC. Electrically conductive membranes: synthesis and applications. J. Memb. Sci.50 (1), 31–49 (1990).
  • Shi W , MaY, SongCet al. Affinity electromembrane: electrically facilitated adsorption. J. Memb. Sci.354 (1–2), 86–92 (2010).
  • Wang J , ShiW, JiangH, WuG, RuanC, GeD. Heparin-doped affinity electromembranes for thrombin purification. J. Memb. Sci.373 (1–2), 89–97 (2011).
  • Wang J , WuG, ShiWet al. Affinity electromembrane with covalently coupled heparin for thrombin adsorption. J. Memb. Sci.428, 70–77 (2013).
  • Razaq A , MihranyanA, WelchK, NyholmL, Str⊘mmeM. Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites. J. Phys. Chem. B113 (2), 426–433 (2009).
  • Razaq A , NyströmG, Str⊘mmeM, MihranyanA, NyholmL. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE6 (12), (2011).
  • Razaq A , Str⊘mmeM, NyholmL, MihranyanA. Electrochemically controlled separation of DNA oligomers with high surface area conducting paper electrode. ECS Trans.35, 135–142 (2011).
  • Rubino S , RazaqA, NyholmL, Str⊘mmeM, LeiferK, MihranyanA. Spatial mapping of elemental distributions in polypyrrole-cellulose nanofibers using energy-filtered transmission electron microscopy. J. Phys. Chem. B114 (43), 13644–13649 (2010).
  • Winchester JF , RoncoC. Sorbent augmented hemodialysis systems: are we there yet?J. Am. Soc. Nephr.21 (2), 209–211 (2010).
  • Winchester JF , RoncoC, BradyJAet al. Sorbent augmented dialysis: minor addition or major advance in therapy? Blood Purif. 19 (2), 255–259 (2001).
  • Ash SR . Hemodiabsorption in treatment of acute hepatic failure and chronic cirrhosis with ascites. Artif. Org.18 (5), 355–362 (1994).
  • Carlsson DO , NyströmG, NyholmL, MihranyanA, Str⊘mmeM. Development of nanocellulose/polypyrrole composites towards blood purification. Procedia Eng.44, 733–736 (2012).
  • Carlsson DO , MihranyanA, Str⊘mmeM, NyholmL. Tailoring porosities and electrochemical properties of composites composed of microfibrillated cellulose and polypyrrole. RSC Adv.4 (17), 8489–8497 (2014).
  • Mihranyan A , EsmaeiliM, RazaqA, AlexeichikD, LindströmT. Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J. Mat. Sci.47 (10), 4463–4472 (2012).
  • Ferraz N , LeschinskayaA, ToomadjF, FellströmB, Str⊘mmeM, MihranyanA. Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis. Cellulose20 (6), 2959–2970 (2013).  
  • Vanholder R , GlorieuxG, De SmetR, De DeynPP. Low water-soluble uremic toxins. Adv. Ren. Repl. Ther.10 (4), 257–269 (2003).
  • Foley RN , ParfreyPS, HarnettJD, KentGM, MurrayDC, BarrePE. Hypoalbuminemia, cardiac morbidity, and mortality in end-stage renal disease. J. Am. Soc. Nephrol.7 (5), 728–736 (1996).
  • Owen WF Jr , LewNL, LiuY, LowrieEG, LazarusJM. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N. Engl. J. Med.329 (14), 1001–1006 (1993).
  • Ward RA . Protein-leaking membranes for hemodialysis: A new class of membranes in search of an application?J. Am. Soc. Nephr.16 (8), 2421–2430 (2005).
  • Krieter DH , CanaudB. High permeability of dialysis membranes: what is the limit of albumin loss?Nephr. Dial. Transplant.18 (4), 651–654 (2003).
  • Boure T , VanholderR. Which dialyser membrane to choose?Nephrol. Dial. Transplant.19 (2), 293–296 (2004).
  • Bouman CS , Van OldenRW, StoutenbeekCP. Cytokine filtration and hemofiltration in four different membranes. Blood Purif.16, 261–268 (1998).
  • Svirskis D , Travas-SejdicJ, RodgersA, GargS. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release146 (1), 6–15 (2010).
  • Poole-Warren L , GodingJ, GreenR, MartensP. Challenges if therapeutic delivery using conducting polymers. Ther. Deliv.3 (4), 421–427 (2012).  
  • Jeon G , YangSY, ByunJ, KimJK. Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett.11 (3), 1284–1288 (2011).
  • Richardson RT , ThompsonB, MoultonSet al. The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials28 (3), 513–523 (2007).
  • Richardson RT , WiseAK, ThompsonBCet al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials30 (13), 2614–2624 (2009).
  • Thompson BC , MoultonSE, RichardsonRT, WallaceGG. Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. Biomaterials32 (15), 3822–3831 (2011).
  • Abidian MR , MartinDC. Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mat.19 (4), 573–585 (2009).
  • Hepel M , FijalekZ. Electrorelease of neuroleptic drugs from composite polymer matrix. Proc. Contr. Rel. Soc. (25), 750–751 (1998).
  • Guiseppi-Elie A . Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials31 (10), 2701–2716 (2010).
  • Luo X , CuiXT. Electrochemically controlled release based on nanoporous conducting polymers. Electrochem. Comm.11 (2), 402–404 (2009).
  • Sharma M , WaterhouseGIN, LoaderSWC, GargS, SvirskisD. High surface area polypyrrole scaffolds for tunable drug delivery. Int. J. Pharm.443 (1–2), 163–168 (2013).
  • George PM , LavanDA, BurdickJA, ChenCY, LiangE, LangerR. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv. Mat.18 (5), 577–581 (2006).
  • Bidan G , LopezC, Mendes-ViegasF, VieilE, GadelleA. Incorporation of sulphonated cyclodextrins into polypyrrole: an approach for the electro-controlled delivering of neutral drugs. Biosens. Bioel.10 (1–2), 219–229 (1995).
  • Boyle A , GeniesE, FouletierM. EIectrochemical behaviour of polypyrrole films doped with ATP anions. J. Electroanal. Chem.279 (1–2), 179–186 (1990).
  • Pyo M , MaederG, KennedyRT, ReynoldsJR. Controlled release of biological molecules from conducting polymer modified electrodes. The potential dependent release of adenosine 5′-triphosphate from poly(pyrrole adenosine 5′-triphosphate) films. J. Electroanal. Chem.368 (1–2), 329–332 (1994).
  • Xiao Y , CheJ, LiCMet al. Preparation of nano-tentacle polypyrrole with pseudo-molecular template for ATP incorporation. J. Biomed. Mat. Res. Pt A80 (4), 925–931 (2007).
  • Li L , HuangC. Electrochemical/electrospray mass spectrometric studies of electrochemically stimulated ATP release from PP/ATP films. J. Am. Soc. Mass Spectr.18 (5), 919–926 (2007).
  • Kontturi K , PenttiP, SundholmG. Polypyrrole as a model membrane for drug delivery. J. Electroanal. Chem.453 (1–2), 231–238 (1998).
  • Miller LL , ZhouQX.  Poly(N-methylpyrrolylium) poly(styrenesulfonate). A conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine. Macromolecules20 (7),  1594–1597  (1987).
  • Zhou QX , MillerLL, ValentineJR.  Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly(N-methyl-pyrrole)/polyanion composite redox polymers. J. Electroanal. Chem.261 (1),  147–164  (1989).
  • Zinger B , MillerLL. Timed release of chemicals from polypyrrole films. J. Am. Chem.Soc.106 (22), 6861–6863 (1984).
  • Green RA , LovellNH, Poole-WarrenLA. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomat.6 (1), 63–71 (2010).
  • Thompson BC , MoultonSE, DingJet al. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J. Control. Release116 (3), 285–294 (2006).
  • Li Y , NeohKG, KangET. Controlled release of heparin from polypyrrole-poly(vinyl alcohol) assembly by electrical stimulation. J. Biomed. Mat. Res. Pt A73 (2), 171–181 (2005).
  • Esrafilzadeh D , RazalJM, MoultonSE, StewartEM, WallaceGG. Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. J. Control. Release169 (3), 313–320 (2013).
  • Sirivisoot S , ParetaR, WebsterTJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology22 (8), 085101 (2011).
  • Sirivisoot S , ParetaRA, WebsterTJ. Electrically-controlled penicillin/streptomycin release from nanostructured polypyrrole coated on titanium for orthopedic implants. Solid St. Phen. Nanocomp. Mat.151, 197–202 (2009).
  • Wadhwa R , LagenaurCF, CuiXT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control. Release110 (3), 531–541 (2006).
  • Abidian MR , KimDH, MartinDC. Conducting-polymer nanotubes for controlled drug release. Adv. Mat.18 (4), 405–409 (2006).
  • Svirskis D , SharmaM, YuY, GargS. Electrically switchable polypyrrole film for the tunable release of progesterone. Ther. Deliv.4 (3), 307–313 (2013).
  • Ameli A , AlizadehN. Nanostructured conducting molecularly imprinted polymer for selective uptake/release of naproxen by the electrochemically controlled sorbent. Anal. Biochem.428 (2), 99–106 (2012).
  • Hepel M , MahdaviF. Application of the electrochemical quartz crystal microbalance for electrochemically controlled binding and release of chlorpromazine from conductive polymer matrix. Microchem. J.56 (1), 54–64 (1997).
  • Svirskis D , WrightBE, Travas-SejdicJ, RodgersA, GargS. Development of a controlled release system for risperidone using polypyrrole: mechanistic studies. Electroanalysis22 (4), 439–444 (2010).
  • Svirskis D , WrightBE, Travas-SejdicJ, RodgersA, GargS. Evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system. Sens Actuators B Chem151 (1), 97–102 (2010).
  • Bugge JF . Influence of renal replacement therapy on pharmacokinetics in critically ill patients. Best Pract. Res. Clin. Anaesthes.18 (1), 175–187 (2004).
  • Sefer S , DegoricijaV. About drug dialyzability. Acta Clinica Croat.42 (3), 257–267 (2003).
  • Gorbet MB , SeftonMV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials25 (26), 5681–5703 (2004).
  • Nilsson B , EkdahlKN, MollnesTE, LambrisJD. The role of complement in biomaterial-induced inflammation. Mol. Immunol.44 (1–3), 82–94 (2007).
  • Ekdahl KN , LambrisJD, ElwingHet al. Innate immunity activation on biomaterial surfaces: A mechanistic model and coping strategies. Adv. Drug Del. Rev.63, 1042–1050 (2011).
  • Deangelis RA , ReisES, RicklinD, LambrisJD. Targeted complement inhibition as a promising strategy for preventing inflammatory complications in hemodialysis. Immunobiology217 (11), 1097–1105 (2012).
  • Markiewski MM , NilssonB, EkdahlKN, MollnesTE, LambrisJD. Complement and coagulation: strangers or partners in crime?Trends Immunol.28 (4), 184–192 (2007).
  • Frank RD , WeberJ, DresbachH, ThelenH, WeissC, FloegeJ. Role of contact system activation in hemodialyzer-induced thrombogenicity. Kidney Int.60 (5), 1972–1981 (2001).
  • Uda S , MizobuchiM, AkizawaT. Biocompatible characteristics of high- performance membranes. In: High-Performance Membrane Dialyzers.SaitoA, KawanishiH, YamashitaAC, MineshimaM (Eds). Karger, Basel, Switzerland, 23–29 (2011).
  • Hakim RM . Clinical implications of hemodialysis membrane biocompatibility. Kidney Int.44 (3), 484–494 (1993).
  • Erlenkotter A , EndresP, NederlofB, HornigC, VienkenJ. Score model for the evaluation of dialysis membrane hemocompatibility. Art. Org.32 (12), 962–969 (2008).
  • Vienken J . Biomaterials for medical devices: are current hemo- or biocompatibility tests adequate?Materialwissenschaft und Werkstofftechnik41, 1081–1085 (2010).
  • Ateh DD , NavsariaHA, VadgamaP. Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interf.3 (11), 741–752 (2006).
  • Meng S , RouabhiaM, ShiG, ZhangZ. Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites. J. Biomed. Mater. Res. A87 (2), 332–344 (2008).
  • Wang X , GuX, YuanCet al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mat. Res. Pt A68A (3), 411–422 (2004).
  • Williams RL , DohertyPJ. A preliminary assessment of poly(pyrrole) in nerve guide studies. J. Mat. Sci. Mat. Med.5, 429–433 (1994).
  • Vanholder R . Biocompatibility issues in hemodialysis. Clin. Mater.10 (1–2), 87–133 (1992).
  • Carlsson DO , SjödinM, NyholmL, Str⊘mmeM. A comparative study of the effects of rinsing and aging of polypyrrole/nanocellulose composites on their electrochemical properties. J. Phys. Chem. B117 (14), 3900–3910 (2013).
  • Maksymiuk K . Chemical reactivity of polypyrrole and its relevance to polypyrrole based electrochemical sensors. Electroanalysis18, 1537–1551 (2006).
  • Park DS , ShimYB, ParkSM. Degradation of electrochemically prepared polypyrrole in aqueous sulfuric acid. J. Electrochem. Soc.140 (3), 609–614 (1993).
  • Pud AA . Stability and degradation of conducting polymers in electrochemical systems. Synth. Metals66 (1), 1–18 (1994).
  • Li Y , QianR. Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions. Electrochim. Acta45 (11), 1727–1731 (2000).
  • Kaynak A , RintoulL, G.A.G. Change of mechanical and electrical properties of polypyrrole films with dopant concetration and oxidative aging. Mat. Res. Bull.35, 813–824 (2000).
  • Kuhn HH , ChildAD, KimbellWC. Toward real applications of conductive polymers. Synth. Metals71, 2139–2142 (1995).
  • Larsson R .  Heparin-binding to improve biocompatibility.In:  Encyclopedia of Biomaterials and Biomedical Engineering(2nd Edition) .  WnekGE, BowlinGL  (Eds).  Informa Healthcare, London, UK, 753–761  (2008).
  • Chanard J , LavaudS, RandouxC, RieuP. New insights in dialysis membrane biocompatibility: relevance of adsorption properties and heparin binding. Nephrol. Dial. Transplant.18 (2), 252–257 (2003).
  • Videm V , MollnesTE, FosseEet al. Heparin-coated cardiopulmonary bypass equipment. I. Biocompatibility markers and development of complications in a high-risk population. J. Thorac. Cardiovasc. Surg.117 (4), 794–802 (1999).
  • Nilsson B , KorsgrenO, LambrisJD, EkdahlKN. Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition?Trends Immunol.31 (1), 32–38 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.