339
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Theranostic Nanoemulsions: Codelivery of Hydrophobic Drug and Hydrophilic Imaging Probe for Cancer Therapy and Imaging

, , , , , , , , & show all
Pages 2773-2785 | Received 03 Jan 2014, Accepted 28 Feb 2014, Published online: 08 Jul 2014

References

  • Yue C , LiuP, ZhengMet al. Ir-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials34 (28), 6853–6861 (2013).
  • Zheng C , ZhengM, GongPet al. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials33 (22), 5603–5609 (2012).
  • Li J , JiangF, YangBet al. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep.3, 1998 (2013).
  • Penet MF , ChenZ, KakkadS, PomperMG, BhujwallaZM. Theranostic imaging of cancer. Eur. J. Radiol.81 (Suppl. 1), S124–S126 (2012).
  • Hayashi K , NakamuraM, SakamotoWet al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics3 (6), 366–376 (2013).
  • Nakajima T , SanoK, ChoykePL, KobayashiH. Improving the efficacy of photoimmunotherapy (pit) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics3 (6), 357–365 (2013).
  • Janib SM , MosesAS, MacKayJA. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev.62 (11), 1052–1063 (2010).
  • Ahmed N , FessiH, ElaissariA. Nanoparticles for cancer from diagnosis to theranostics. Drug Discov. Today17 (17–18), 928–934 (2012).
  • Ahmed N , MichelinJM, FessiH, ElaissariA. Modified double emulsion process as a new route to prepare submicron biodegradable magnetic/polycaprolactone particles for in vivo theranostics. Soft Matter8, 2554–2564 (2012).
  • Xie J , LeeS, ChenX. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev.62 (11), 1064–1079 (2010).
  • Ma P , MumperRJ. Paclitaxel nano-delivery systems:a comprehensive review. J. Nanomed. Nanotechnol.4 (2), 1000164 (2013).
  • Leamon CP , LovejoyCD, NguyenB. Patient selection and targeted treatment in the management of platinum-resistant ovarian cancer. Pharmgenomics Pers. Med.6, 113–125 (2013).
  • Mendivil AA , MichaJP, BrownJVet al. Increased incidence of severe gastrointestinal events with first-line paclitaxel, carboplatin, and vorinostat chemotherapy for advanced-stage epithelial ovarian, primary peritoneal, and fallopian tube cancer. Int. J. Gynecol. Cancer23 (3), 533–539 (2013).
  • Fan Y , HuangZ, MaoW. Bevacizumab treatment for advanced non-small cell lung cancer:a case report. Oncol. Lett.6 (6), 1779–1783 (2013).
  • Polat BE , LinS, MendenhallJD, VanVellerB, LangerR, BlankschteinD. Experimental and molecular dynamics investigation into the amphiphilic nature of sulforhodamine b. J. Phys. Chem. B115 (6), 1394–1402 (2011).
  • Han F , FanL, WangX, LiW. Sulforhodamine B restaining as a whole-cell label allows visualizing one more fluorochrome and its application in assaying protein nucleocytoplasmic distribution. Cytometry A81 (6), 532–540 (2012).
  • Yan Y , KrishnakumarS, YuHet al. Nickel(ii) dithiocarbamate complexes containing sulforhodamineB as fluorescent probes for selective detection of nitrogen dioxide. J. Am. Chem. Soc.135 (14), 5312–5315 (2013).
  • Verant P , RicardC, SerducR, VialJC, van der SandenB. In vivo staining of neocortical astrocytes via the cerebral microcirculation using sulforhodamine B. J. Biomed. Optics13 (6), 064028 (2008).
  • Ricard C , VialJC, DouadyJ, van der SandenB. In vivo imaging of elastic fibers using sulforhodamine B. J. Biomed. Optics12 (6), 064017 (2007).
  • Liu JN , BuW, PanLMet al. Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials33 (29), 7282–7290 (2012).
  • He Q , MaM, WeiC, ShiJ. Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials33 (17), 4392–4402 (2012).
  • Glunde K , FossCA, TakagiT, WildesF, BhujwallaZM. Synthesis of 6’-o-lissamine-rhodamine b-glucosamine as a novel probe for fluorescence imaging of lysosomes in breast tumors. Bioconjug. Chem.16 (4), 843–851 (2005).
  • Tang J , FuQ, WangY, RacetteK, WangD, LiuF. Vitamin E reverses multidrug resistance in vitro and in vivo. Cancer Lett.336 (1), 149–157 (2013).
  • Wang D , TangJ, WangYet al. Multifunctional nanoparticles based on a single-molecule modification for the treatment of drug-resistant cancer. Mol. Pharm.10 (4), 1465–1469 (2013).
  • Kunjachan S , RychlikB, StormG, KiesslingF, LammersT. Multidrug resistance: physiological principles and nanomedical solutions. Adv. Drug Deliv. Rev.65 (13–14), 1852–1865 (2013).
  • Savage J , MeaneyM, BrennanGP, HoeyE, TrudgettA, FairweatherI. Increased action of triclabendazole (tcbz) in vitro against a tcbz-resistant isolate of fasciola hepatica following its co-incubation with the p-glycoprotein inhibitor, r(+)-verapamil. Exp. Parasitol.135 (3), 642–653 (2013).
  • Guo Y , LuoJ, TanS, OtienoBO, ZhangZ. The applications of vitaminETPGS in drug delivery. Eur. J. Pham. Sci.49 (2), 175–186 (2013).
  • Zhang Z , TanS, FengSS. Vitamin ETPGS as a molecular biomaterial for drug delivery. Biomaterials33 (19), 4889–4906 (2012).
  • Iqbal J , HombachJ, MatuszczakB, Bernkop-SchnurchA. Design and in vitro evaluation of a novel polymeric p-glycoprotein (p-gp) inhibitor. J. Control. Release147 (1), 62–69 (2010).
  • Debenham PG , KartnerN, SiminovitchL, RiordanJR, LingV. DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression. Mol. Cell Biol.2, 881–889 (1982).
  • Duan JZ , RiviereK, MarroumP. In vivo bioequivalence and in vitro similarity factor (f2) for dissolution profile comparisons of extended release formulations: how and when do they match?Pharm. Res.28 (5), 1144–1156 (2011).
  • Soni TG , DesaiJU, NagdaCD, GandhiTR, ChotaiNP. Mathematical evaluation of similarity factor using various weighing approaches on aceclofenac marketed formulations by model-independent method. Pharmazie63 (1), 31–34 (2008).
  • Raju V , MurthyKV. Development and validation of new discriminative dissolution method for carvedilol tablets. Indian J. Pharm. Sci.73 (5), 527–536 (2011).
  • Choudhury H , GorainB, KarmakarSet al. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm.460 (1–2), 131–143 (2013).
  • Wang J , JiaJ, LiuJ, HeH, ZhangW, LiZ. Tumor targeting effects of a novel modified paclitaxel-loaded discoidal mimic high density lipoproteins. Drug Deliv.20 (8), 356–363 (2013).
  • Deng J , HuangL, LiuF. Extraction issues of paclitaxel in nanocrystals. J. Biomed. Nanotechnol.6 (2), 198–201 (2010).
  • Hollis CP , WeissHL, LeggasM, EversBM, GemeinhartRA, LiT. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J. Control. Release172 (1), 12–21 (2013).
  • Wang J , WangX, SongYet al. Detecting and delivering platinum anticancer drugs using fluorescent maghemite nanoparticles. Chem. Comm. (Camb.)49 (27), 2786–2788 (2013).
  • Lawrie TA , RabbieR, ThomaC, MorrisonJ. Pegylated liposomal doxorubicin for first-line treatment of epithelial ovarian cancer. Cochrane Database Syst. Rev.10, CD010482 (2013).
  • Belhaj-Tayeb H , BrianeD, VergoteJet al. In vitro and in vivo study of 99mTc-MIBI encapsulated in PEG-liposomes: a promising radiotracer for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging30 (4), 502–509 (2003).
  • Peng C , QinJ, LuX, ShiX. Folic acid-modified pegylated dendrimer-entrapped gold nanoparticles for in vitro and in vivo specific computed tomography imaging of tumors. J. Control. Release172 (1), e19–e20 (2013).
  • Shi J , YuX, WangLet al. Pegylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery andMR imaging. Biomaterials34 (37), 9666–9677 (2013).
  • Li J , ZhengL, CaiHet al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumorMR imaging. Biomaterials34 (33), 8382–8392 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.